Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From foe to friend: mosquitoes that transmit malaria may help fight the disease

02.10.2009
Scientists identify gene behind malaria-resistant mosquitoes

For many years, the mosquitoes that transmit malaria to humans were seen as public enemies, and campaigns to eradicate the disease focused on eliminating the mosquitoes.

But, as a study published today in Science shows, the mosquitoes can also be our allies in the fight against this common foe, which kills almost one million people a year and heavily impairs the economies of affected countries.

In this study, researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the Institut National de la Santé et de la Recherche Médicale (INSERM) in Strasbourg, France, discovered that variations in a single gene affect mosquitoes’ ability to resist infection by the malaria parasite.

“Malaria parasites must spend part of their lives inside mosquitoes and another part inside humans, so by learning how mosquitoes resist malaria, we may find new tools for controlling its transmission to humans in endemic areas”, says Stephanie Blandin from INSERM, who carried out the research at EMBL in collaboration with Lars Steinmetz’s group and with Rui Wang-Sattler (now at the Helmholtz Zentrum in Munich, Germany).

The scientists looked for clues in the genome – the whole DNA – of Anopheles gambiae mosquitoes, a major carrier of the parasite that causes the most severe form of human malaria in Africa. They focused on the mosquitoes’ resistance to a commonly used model organism: Plasmodium berghei, a parasite that causes malaria in rodents. When they compared the genomes of mosquitoes that could resist this infection to those of mosquitoes that couldn’t, the scientists discovered that the major difference lies in a single section of one chromosome. Of the roughly 975 genes contained in this section of DNA, one in particular appears to play an important role in determining a mosquito’s resistance to malaria. This gene, called TEP1, encodes a protein which was known to bind to and promote the killing of Plasmodium berghei malaria parasites in the mosquito’s midgut, and the scientists discovered that their strain of resistant mosquitoes had a form, or allele, of TEP1, that was different from those found in non-resistant (or susceptible) strains.

To investigate whether this difference in alleles caused the variation in the mosquitoes’ resistance to malaria, the scientists developed a new technique, reciprocal allele-specific RNA interference, inspired by one Steinmetz’s group had previously created to study yeast. “This was a breakthrough, because the new technique is applicable to many different organisms”, says Steinmetz. “It extends the power we gained in yeast: we can go from a whole region of DNA to the actual causative gene – a feat rarely achievable in complex organisms”. The technique enables scientists to identify exactly which allele is behind a specific trait. They produced individual mosquitoes that had one TEP1 allele from the resistant strain and another from a susceptible strain, and then “turned off” – or silenced – one or other of these alleles. The result: silencing different alleles produced mosquitoes with different degrees of resistance to malaria, meaning that an individual mosquito’s resistance to the malaria parasite depends largely on which form(s) of this one gene it carries.

Although this study focused on the parasite that causes malaria in rodents, there is evidence that this gene may also be involved in the mosquitoes’ immune response to human malaria – a connection the scientists are exploring, and which they believe may help to make malaria eradication programs more effective.

Source:
Blandin, S. A., Wang-Sattler, R., Lamacchia, M., Gagneur, J., Lycett, G., Ning, Y., Levashina, E.A. & Steinmetz, L.M. Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science, 2 October 2009

Lena Raditsch | EMBL
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>