Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From foe to friend: mosquitoes that transmit malaria may help fight the disease

02.10.2009
Scientists identify gene behind malaria-resistant mosquitoes

For many years, the mosquitoes that transmit malaria to humans were seen as public enemies, and campaigns to eradicate the disease focused on eliminating the mosquitoes.

But, as a study published today in Science shows, the mosquitoes can also be our allies in the fight against this common foe, which kills almost one million people a year and heavily impairs the economies of affected countries.

In this study, researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the Institut National de la Santé et de la Recherche Médicale (INSERM) in Strasbourg, France, discovered that variations in a single gene affect mosquitoes’ ability to resist infection by the malaria parasite.

“Malaria parasites must spend part of their lives inside mosquitoes and another part inside humans, so by learning how mosquitoes resist malaria, we may find new tools for controlling its transmission to humans in endemic areas”, says Stephanie Blandin from INSERM, who carried out the research at EMBL in collaboration with Lars Steinmetz’s group and with Rui Wang-Sattler (now at the Helmholtz Zentrum in Munich, Germany).

The scientists looked for clues in the genome – the whole DNA – of Anopheles gambiae mosquitoes, a major carrier of the parasite that causes the most severe form of human malaria in Africa. They focused on the mosquitoes’ resistance to a commonly used model organism: Plasmodium berghei, a parasite that causes malaria in rodents. When they compared the genomes of mosquitoes that could resist this infection to those of mosquitoes that couldn’t, the scientists discovered that the major difference lies in a single section of one chromosome. Of the roughly 975 genes contained in this section of DNA, one in particular appears to play an important role in determining a mosquito’s resistance to malaria. This gene, called TEP1, encodes a protein which was known to bind to and promote the killing of Plasmodium berghei malaria parasites in the mosquito’s midgut, and the scientists discovered that their strain of resistant mosquitoes had a form, or allele, of TEP1, that was different from those found in non-resistant (or susceptible) strains.

To investigate whether this difference in alleles caused the variation in the mosquitoes’ resistance to malaria, the scientists developed a new technique, reciprocal allele-specific RNA interference, inspired by one Steinmetz’s group had previously created to study yeast. “This was a breakthrough, because the new technique is applicable to many different organisms”, says Steinmetz. “It extends the power we gained in yeast: we can go from a whole region of DNA to the actual causative gene – a feat rarely achievable in complex organisms”. The technique enables scientists to identify exactly which allele is behind a specific trait. They produced individual mosquitoes that had one TEP1 allele from the resistant strain and another from a susceptible strain, and then “turned off” – or silenced – one or other of these alleles. The result: silencing different alleles produced mosquitoes with different degrees of resistance to malaria, meaning that an individual mosquito’s resistance to the malaria parasite depends largely on which form(s) of this one gene it carries.

Although this study focused on the parasite that causes malaria in rodents, there is evidence that this gene may also be involved in the mosquitoes’ immune response to human malaria – a connection the scientists are exploring, and which they believe may help to make malaria eradication programs more effective.

Source:
Blandin, S. A., Wang-Sattler, R., Lamacchia, M., Gagneur, J., Lycett, G., Ning, Y., Levashina, E.A. & Steinmetz, L.M. Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science, 2 October 2009

Lena Raditsch | EMBL
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>