Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From foe to friend: mosquitoes that transmit malaria may help fight the disease

02.10.2009
Scientists identify gene behind malaria-resistant mosquitoes

For many years, the mosquitoes that transmit malaria to humans were seen as public enemies, and campaigns to eradicate the disease focused on eliminating the mosquitoes.

But, as a study published today in Science shows, the mosquitoes can also be our allies in the fight against this common foe, which kills almost one million people a year and heavily impairs the economies of affected countries.

In this study, researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the Institut National de la Santé et de la Recherche Médicale (INSERM) in Strasbourg, France, discovered that variations in a single gene affect mosquitoes’ ability to resist infection by the malaria parasite.

“Malaria parasites must spend part of their lives inside mosquitoes and another part inside humans, so by learning how mosquitoes resist malaria, we may find new tools for controlling its transmission to humans in endemic areas”, says Stephanie Blandin from INSERM, who carried out the research at EMBL in collaboration with Lars Steinmetz’s group and with Rui Wang-Sattler (now at the Helmholtz Zentrum in Munich, Germany).

The scientists looked for clues in the genome – the whole DNA – of Anopheles gambiae mosquitoes, a major carrier of the parasite that causes the most severe form of human malaria in Africa. They focused on the mosquitoes’ resistance to a commonly used model organism: Plasmodium berghei, a parasite that causes malaria in rodents. When they compared the genomes of mosquitoes that could resist this infection to those of mosquitoes that couldn’t, the scientists discovered that the major difference lies in a single section of one chromosome. Of the roughly 975 genes contained in this section of DNA, one in particular appears to play an important role in determining a mosquito’s resistance to malaria. This gene, called TEP1, encodes a protein which was known to bind to and promote the killing of Plasmodium berghei malaria parasites in the mosquito’s midgut, and the scientists discovered that their strain of resistant mosquitoes had a form, or allele, of TEP1, that was different from those found in non-resistant (or susceptible) strains.

To investigate whether this difference in alleles caused the variation in the mosquitoes’ resistance to malaria, the scientists developed a new technique, reciprocal allele-specific RNA interference, inspired by one Steinmetz’s group had previously created to study yeast. “This was a breakthrough, because the new technique is applicable to many different organisms”, says Steinmetz. “It extends the power we gained in yeast: we can go from a whole region of DNA to the actual causative gene – a feat rarely achievable in complex organisms”. The technique enables scientists to identify exactly which allele is behind a specific trait. They produced individual mosquitoes that had one TEP1 allele from the resistant strain and another from a susceptible strain, and then “turned off” – or silenced – one or other of these alleles. The result: silencing different alleles produced mosquitoes with different degrees of resistance to malaria, meaning that an individual mosquito’s resistance to the malaria parasite depends largely on which form(s) of this one gene it carries.

Although this study focused on the parasite that causes malaria in rodents, there is evidence that this gene may also be involved in the mosquitoes’ immune response to human malaria – a connection the scientists are exploring, and which they believe may help to make malaria eradication programs more effective.

Source:
Blandin, S. A., Wang-Sattler, R., Lamacchia, M., Gagneur, J., Lycett, G., Ning, Y., Levashina, E.A. & Steinmetz, L.M. Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science, 2 October 2009

Lena Raditsch | EMBL
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>