Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Focus on Glaucoma Origins Continues Path Toward Potential Cure

Glaucoma is the second leading cause of blindness. Nearly 4 million Americans have the disorder, which affects 70 million worldwide. There is no cure and no early symptoms. Once vision is lost, it’s permanent.

New findings at Georgia Tech, published in January during Glaucoma Awareness Month, explore one of the many molecular origins of glaucoma and advance research dedicated to fighting the disease.

Glaucoma is typically triggered when fluid is unable to circulate freely through the eye’s trabecular meshwork (TM) tissue. Intraocular pressure rises and damages the retina and optic nerve, which causes vision loss. In certain cases of glaucoma, this blockage results from a build-up of the protein myocilin. Georgia Tech Chemistry and Biochemistry Assistant Professor Raquel Lieberman focused on examining the structural properties of these myocilin deposits.

“We were surprised to discover that both genetically defected as well as normal, or wild-type (WT), myocilin are readily triggered to produce very stable fibrous residue containing a pathogenic material called amyloid,” said Lieberman, whose work was published in the most recent Journal of Molecular Biology.

Amyloid formation, in which a protein is converted from its normal form into fibers, is recognized as a major contributor to numerous non-ocular disorders, including Alzheimer’s, certain forms of diabetes and Mad Cow disease (in cattle). Scientists are currently studying ways to destroy amyloid fibrils as an option for treating these diseases. Further research, based on Lieberman’s findings, could potentially result in drugs that prevent or stop myocilin amyloid formation or destroy existing fibrils in glaucoma patients.

Until this point, amyloids linked to glaucoma had been restricted to the retinal area. In those cases, amyloids kill retina cells, leading to vision loss, but don’t affect intraocular pressure.

“The amyloid-containing myocilin deposits we discovered kill cells that maintain the integrity of TM tissue,” said Lieberman. “In addition to debris from dead cells, the fibrils themselves may also form an obstruction in the TM tissue. Together, these mechanisms may hasten the increase of intraocular pressure that impairs vision.”

Together with her research team, Lieberman produced WT and genetically defected myocilin variants that had been documented in patients who develop glaucoma in childhood or early adulthood. The experiments were conducted in collaboration with Georgia Tech Biology Professor Ingeborg Schmidt-Krey and Stanford Genetics Professor Douglas Vollrath. Three Georgia Tech students also participated in the research: Susan Orwig (Ph.D. graduate, Chemistry and Biochemistry), Chris Perry (current undergraduate, Biochemistry) and Laura Kim (master's graduate, Biology).

The National Institutes of Health (award number R01EY021205 from the National Eye Institute) funded the research. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Eye Institute or the National Institutes of Health.

Jason Maderer | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>