Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flying to the heart of the matter

02.04.2010
The first systematic map of heart failure identifies hundreds of genes that regulate heart function

Was it a horror film or a sci-fi spoof? Fans of the 1986 blockbuster "The Fly" have been debating the issue ever since but one point has always been accepted. The underlying idea is plainly too far-fetched to be plausible: man and flies have nothing at all in common and the idea that they could exchange genes is ridiculous.

Or is it? The cover story of the scientific journal Cell (April 2, 2010) is a paper in which scientists at the Institute of Molecular Biotechnology (IMBA) in Vienna, Austria, report that human hearts and fly hearts are essentially under the control of many of the same genes. Using a model of heart failure in the fly, they present a systematic map of the genes involved in heart disease and heart failure and confirm that one of the control mechanisms they have identified really is associated with heart failure in flies, mice and in man.

500 genes involved in regulation of heart function

Heart disease represents the most common cause of death in Europe and North America but our knowledge of its genetic causes remains scant. In close collaboration with Rolf Bodmer of the Sanford-Burnham Medical Research Institute in La Jolla, California, Greg Neely in Josef Penninger's group at the IMBA has screened for genes that regulate heart function in the fly. Taking advantage of the in-house fly library VDRC (Vienna Drosophila Research Center), he found nearly 500 genes that when inhibited caused increased mortality when the flies were stressed. Penninger's collaborators at Strand Life Sciences in Bangalore, India used advanced computer methods to investigate the interconnections between the genes and the result - which looks like a super-complicated version of a city transport system - is the first global map of the genetic interactions behind heart function and heart failure.

From fly to mouse to humans

As Penninger notes, "About 35% of the hits relate to genes that are already known to be involved in heart function, so the method works. But we wanted to see what the other genes do." One of the 'novel' pathways detected was the CCR4-Not complex. This is highly conserved through evolution but the idea that it has a role in the heart was new. Neely was able to confirm that it is involved in heart function in the fly, and Keiji Kuba at the Akita University School of Medicine Global COE in Japan, generated knockout mice for Not3 gene, one of the CCR4-Not components and found that the mice developed severe heart problems when subjected to cardiac stress. What does CCR4-Not do in man? Based on the results of the work in flies, it seemed possible that mutations (variants) around the site of the human NOT3 gene could be associated with heart disease.

Working with Andrew Hicks and Peter P. Pramstaller of the EURAC-Institute of Genetic Medicine in Bolzano, Italy, and Arne Pfeufer of the Institute of Human Genetics at Technical University in Munich, who are all part of the QTSCD consortium (QT Interval and Sudden Cardiac Death), to explore this possibility using human data from ECG recordings, this idea was shown to be correct: variants over the region are associated with changes in QT interval, which predispose to sudden cardiac death.

Penninger notes with satisfaction that "Our work on flies has identified a possible cause of human heart disease that the human genetic screens had missed."

Results may yield clues to future therapies

The result confirms that Neely's screen in flies can be used to identify genes involved in heart function and heart disease in mice and humans. The screen picked up very many genes, over a hundred of which have no known function. They may also represent candidates for factors that predispose individuals to heart disease. Investigating them will involve a vast amount of work that will be performed in collaboration with groups studying heart function in flies, zebra fish, mice and men. Combining data from all of these models will give an overall picture of heart function under normal and diseased conditions - and presumably important clues to new therapeutic possibilities.

The paper "A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function" by G. Gregory Neely et al. will be publish in the April 2, 2010 issue of the journal Cell, along with a cover illustration.

About IMBA
The IMBA - Institute for Molecular Biotechnology of the Austrian Academy of Sciences - opened in 2003. It combines fundamental and applied research in the field of biomedicine. Interdisciplinary research groups address functional genetic questions, particularly those related to the origin of disease. The ultimate goal is to implement acquired knowledge into the development of innovative applications for prevention, diagnosis and treatment of disease.
About IMP - IMBA Research Center
A cooperation contract links the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) to the Research Institute of Molecular Pathology (IMP), which has operated since 1988 and is supported by Boehringer Ingelheim. Under the name of the "IMP - IMBA Research Center", both institutes have access to a combined infrastructure in scientific and administrative areas. Together, the two institutes employ around 400 staff from 30 nations and are members of the Campus Vienna Biocenter.
Contact
Mag. Evelyn Missbach, MAS
IMP-IMBA Communications
Phone: +43 1 79730 3626
evelyn.missbach@imba.oeaw.ac.at
Scientific Contact:
Prof. Josef Penninger
josef.penninger@imba.oeaw.ac.at
Link to the Penninger Lab:
http://www.imba.oeaw.ac.at/research/josef-penninger/
Illustrations and a video are available at
http://www.imba.oeaw.ac.at/pressefoto-herzgene

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imba.oeaw.ac.at/research/josef-penninger/
http://www.imba.oeaw.ac.at/pressefoto-herzgene

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>