Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Flying fish glide as well as birds

We're all familiar with birds that are as comfortable diving as they are flying but only one family of fish has made the reverse journey.

Flying fish can remain airborne for over 40s, covering distances of up to 400m at speeds of 70km/h. Haecheon Choi, a mechanical engineer from Seoul National University, Korea, became fascinated by flying fish when reading a science book to his children.

Realising that flying fish really do fly, he and his colleague, Hyungmin Park, decided to find out how these unexpected fliers stay aloft and publish their discovery that flying fish glide as well as birds on 10 September 2010 in The Journal of Experimental Biology at

But getting hold of flying fish to test in a wind tunnel turned out to be easier said than done. After travelling to Japan to try to buy fish from the world famous Tsukiji fish market, the duo eventually struck up a collaboration with the National Federation of Fisheries Cooperatives of Korea. Park went fishing in the East Korean Sea, successfully landing 40 darkedged-wing flying fish. Selecting five similarly sized fish, Park took them to the Korean Research Centre of Maritime Animals, where they were dried and stuffed, some with their fins extended (as in flight) and one with its fins held back against the body, ready to test their aerodynamics in the wind tunnel. Fitting 6-axis force sensors to the fish's wings and tilting the fish's body at angles ranging from degrees to 45 degrees, Park and Choi measured the forces on the flying fish's fins and body as they simulated flights.

Calculating the flying fish's lift-to-drag ratios – a measure of the horizontal distance travelled relative to the descent in height during a glide – Choi and Park found that the flying fish performed remarkably well: gliding better than insects and as well as birds such as petrels and wood ducks. And when they analysed how the fish's lift-to-drag ratio changed as they varied the tilt angle, the duo found that the ratio was highest and the fish glided furthest when they were parallel to the surface, which is exactly what they do above the ocean. Measuring the airborne fish's pitching moment, the duo also found that the fish were very stable as they glided. However, when they analysed the stability of the fish with its fins swept back in the swimming position it was unstable, which is exactly what you need for aquatic manoeuvrability. So flying fish are superbly adapted for life in both environments.

Knowing flying fish always fly near the surface of the sea, Choi and Park then decided to find out if the fish derived any benefit from the aerodynamic effect of flying close to the surface. Lowering the fish's height in the wind tunnel they found that the lift-to-drag ratio increased as the fish models 'glided' near the floor. And when Park replaced the solid surface with a tank of water, the lift to drag ratio rose even more, allowing the fish to glide even further. So, gliding near the surface of the sea helps the fish to go further.

Finally, Choi and Park directly visualised the air currents passing around the flying fish's wings and body. Blowing streams of smoke over the fish, the duo saw jets of air accelerating back along the fish's body. Park explains that the tandem arrangement of the large pectoral fin at the front and smaller pelvic fin at the back of the fish's body accelerates the air flow towards the tail like a jet, increasing the fish's lift-to-drag ratio further and improving its flying performance even more.

Having shown that flying fish are exceptional fliers, Choi and Park are keen to build an aeroplane that exploits ground effect aerodynamics inspired by flying fish technology.


REFERENCE: Park, H. and Choi, H. (2010). Aerodynamic characteristics of flying fish in gliding flight. J. Exp. Biol. 213, 3269-3279.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT

Kathryn Knight | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>