Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flying fish glide as well as birds

10.09.2010
We're all familiar with birds that are as comfortable diving as they are flying but only one family of fish has made the reverse journey.

Flying fish can remain airborne for over 40s, covering distances of up to 400m at speeds of 70km/h. Haecheon Choi, a mechanical engineer from Seoul National University, Korea, became fascinated by flying fish when reading a science book to his children.

Realising that flying fish really do fly, he and his colleague, Hyungmin Park, decided to find out how these unexpected fliers stay aloft and publish their discovery that flying fish glide as well as birds on 10 September 2010 in The Journal of Experimental Biology at http://jeb.biologists.org.

But getting hold of flying fish to test in a wind tunnel turned out to be easier said than done. After travelling to Japan to try to buy fish from the world famous Tsukiji fish market, the duo eventually struck up a collaboration with the National Federation of Fisheries Cooperatives of Korea. Park went fishing in the East Korean Sea, successfully landing 40 darkedged-wing flying fish. Selecting five similarly sized fish, Park took them to the Korean Research Centre of Maritime Animals, where they were dried and stuffed, some with their fins extended (as in flight) and one with its fins held back against the body, ready to test their aerodynamics in the wind tunnel. Fitting 6-axis force sensors to the fish's wings and tilting the fish's body at angles ranging from degrees to 45 degrees, Park and Choi measured the forces on the flying fish's fins and body as they simulated flights.

Calculating the flying fish's lift-to-drag ratios – a measure of the horizontal distance travelled relative to the descent in height during a glide – Choi and Park found that the flying fish performed remarkably well: gliding better than insects and as well as birds such as petrels and wood ducks. And when they analysed how the fish's lift-to-drag ratio changed as they varied the tilt angle, the duo found that the ratio was highest and the fish glided furthest when they were parallel to the surface, which is exactly what they do above the ocean. Measuring the airborne fish's pitching moment, the duo also found that the fish were very stable as they glided. However, when they analysed the stability of the fish with its fins swept back in the swimming position it was unstable, which is exactly what you need for aquatic manoeuvrability. So flying fish are superbly adapted for life in both environments.

Knowing flying fish always fly near the surface of the sea, Choi and Park then decided to find out if the fish derived any benefit from the aerodynamic effect of flying close to the surface. Lowering the fish's height in the wind tunnel they found that the lift-to-drag ratio increased as the fish models 'glided' near the floor. And when Park replaced the solid surface with a tank of water, the lift to drag ratio rose even more, allowing the fish to glide even further. So, gliding near the surface of the sea helps the fish to go further.

Finally, Choi and Park directly visualised the air currents passing around the flying fish's wings and body. Blowing streams of smoke over the fish, the duo saw jets of air accelerating back along the fish's body. Park explains that the tandem arrangement of the large pectoral fin at the front and smaller pelvic fin at the back of the fish's body accelerates the air flow towards the tail like a jet, increasing the fish's lift-to-drag ratio further and improving its flying performance even more.

Having shown that flying fish are exceptional fliers, Choi and Park are keen to build an aeroplane that exploits ground effect aerodynamics inspired by flying fish technology.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Park, H. and Choi, H. (2010). Aerodynamic characteristics of flying fish in gliding flight. J. Exp. Biol. 213, 3269-3279.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>