Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Fly DNA, the Footprint of a Fly Virus

02.08.2012
The discovery of virus-like genes in the DNA of a commonly studied fruit fly could enable research on whether animals hijack viral genes as an anti-viral defense

In a curious evolutionary twist, several species of a commonly studied fruit fly appear to have incorporated genetic material from a virus into their genomes, according to new research by University at Buffalo biologists.

The study found that several types of fruit fly -- scientific name Drosophila -- harbored genes similar to those that code for the sigma virus, a fly virus in the same family as rabies. The authors believe the genetic information was acquired during past viral infections and passed on from fruit fly parent to offspring through many generations.

The discovery could open the door for research on why flies and other organisms selectively retain viral genes -- dubbed "fossil" genes -- through evolution, said lead author Matthew Ballinger, a PhD candidate in UB's Department of Biological Sciences.

One hypothesis is that viral genes provide an anti-viral defense, but scientists have had trouble testing this theory because viral genes found in animals are often millions of years old -- ancient enough that the genes' genetic sequence differs significantly from that of modern-day viruses.

The new study, in contrast, uncovered a viral gene that appears to be relatively young, with genetic material closely mirroring that of a modern sigma virus.

"We don't know that these genes have an anti-viral function, but it's something we'd like to test," Ballinger said. "It's tempting to think that these genes are retained and express RNA because there's some kind of advantage to the host."

He and his co-authors -- Professor Jeremy Bruenn and Associate Professor Derek Taylor in UB's Department of Biological Sciences -- reported their results online on June 26 in the journal Molecular Phylogenetics and Evolution. The research, supported in part by UB's Center for Advanced Molecular Biology and Immunology, will also appear in a forthcoming print edition of the journal.

"Our findings establish that sigma virus-like (genes) are present in Drosophila species and that these infection scars represent a rich evolutionary history between virus and host," the researchers wrote in their paper.

Another important contribution the study makes is advancing our understanding of how flies and other organisms acquire copies of virus-like genes in the first place.

The sigma virus belongs to a class of RNA viruses that lack an important enzyme, reverse transcriptase, that enables other viruses to convert their genetic material into DNA for integration into host genomes.

Given this limitation, how did sigma virus genes get into fly genomes?

The new study supplies one possible answer, suggesting that viruses may use reverse transcriptase present in host cells to facilitate incorporation of viral genes into host DNA.

In the genome of one fly, the researchers found a sigma fossil gene right in the middle of a retrotransposon, a genetic sequence that produces reverse transcriptase for the purpose of making new copies of itself to paste into the genome.

The position and context of the viral gene suggests that the retrotransposon made a copying error and copied and pasted virus genes into the fly genome. This is the clearest evidence yet that non-retroviral RNA virus genes naturally enter host genomes by the action of enzymes already present in the cell, Ballinger said.

The study builds on prior research by Taylor and Bruenn, who previously co-authored a paper showing that bats, rodents and wallabies harbor fossil copies of genes that code for filoviruses, which cause deadly Ebola and Marburg hemorrhagic fevers in humans.

The next step in the research is to continue exploring how and why flies and other organisms acquire copies of virus genes. To find out whether sigma virus-like genes have an anti-viral function in fruit flies, scientists could splice the genes into flies that can contract modern sigma viruses, or introduce modern sigma viruses into flies that already harbor the genes.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>