Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fly Cells Flock Together, Follow the Light

21.06.2010
Scientists at Johns Hopkins report using a laser beam to activate a protein that makes a cluster of fruit fly cells act like a school of fish turning in social unison, following the lead of the one stimulated with light.

The study of this unexpected cell movement, reported May 16 in Nature Cell Biology, holds potential importance for understanding embryonic development, wound healing and tumor metastasis — the process by which tumor cells acquire the ability to invade surrounding tissues and migrate long distances to colonize lymph nodes, bones and other distant organs.

The research dramatically demonstrates, the researchers say, the collective direction-sensing behavior of live cells in intact tissue, and a means of controlling protein behavior in a living organism by shining a focused beam of light precisely on the parts of cells where they want the protein to be active.

“Our little system in the fruit fly is an elegant example of cells behaving socially in their natural environment — surrounded by other cells,” says Denise Montell, Ph.D., a professor of biological chemistry and director of the Center for Cell Dynamics at the Johns Hopkins University School of Medicine. “You can’t capture this behavior if you look at individual cells in a culture dish.”

The “social” migrating behavior among a cluster of cells in the fly ovary surprised the research team, which was using a new laser light tool to manipulate protein activity.

“People tend to think of cancer as single cells breaking off from the tumor and migrating away,” Montell says, but it’s likely that this collective form of movement is important, at one phase or another, in the spread of tumors.”

A better understanding of how and why cells move can facilitate the development of new treatments not only for cancer but other disorders characterized by aberrant cell behavior.

Developed in the laboratory of Klaus Hahn, Ph.D., Thurman Professor of Pharmacology at the University of North Carolina at Chapel Hill, the light-activation technique previously had been shown to control cell movement in cultured mammalian cells. The Hopkins-led study provides proof of principle that a non-toxic light alone can activate a protein in live organisms, allowing researchers to safely control when and where cells move.

The Hopkins team conducted their study on a cluster of six so-called border cells in the fly ovary, cells the team has long studied and which are important to the fly because if they don’t migrate, females are sterile. In addition they serve as a model for understanding the mechanisms that control collective cell movements in general, which occur during normal embryonic development, wound healing and in tumor metastasis.

First, they genetically altered the border cells so that they were lacking the ability to respond to naturally occurring chemical attractants that normally control their movement. Then they used a fly protein known as Rac, which was fused to a photoactivatable (PA) plant protein, a creation engineered by Hahn’s lab. The PA-Rac, which remains inert in the dark, reacts to light because the plant protein changes shape and allows Rac to become active, causing the cells to move.

Because a beam of laser light can be much smaller than a cell, the team was able to activate Rac not only in one single cell, but also in one part of one cell, Montell says: “The other cool thing is this is reversible, so as soon as you take the light away, the PA-Rac wraps back up and turns itself off.”

Following up on previous research, the team wanted to find out if Rac would be sufficient to set the direction of movement of cells within live tissue.

When they shined a laser beam on various individual cells, the entire cluster responded by moving in directions that it wouldn’t under normal conditions: sideways, for instance, and even in reverse. In short, they followed the light.

“When we activated Rac in even one part of one of these cells — and not in the cell that would be the leader if all was normal — it was as if all the other cells said, Aha! You’ve got more Rac activity so we’re heading your way,” Montell says. “It’s amazing to me that somehow the cells sense each others’ levels of Rac activity and collectively decide which way to go.

Authors on the paper, in addition to Montell and Hahn, are Xiaobo Wang from Johns Hopkins and Yi Wu from UNC.

Funding was provided by the National Institutes of Health and the Cell Migration Consortium.

On the Web:

A video clip of a photo-activatable form of Rac is available at: http://www.icm.com/montell/MovieS5%28RacQ61Lforwardandrev%29.mov

Denise Montell Lab: http://www.hopkinsmedicine.org/dmontell/

Nature Cell Biology: http://www.nature.com/ncb/index.html

Cell Migration Consortium: http://www.cellmigration.org/index.shtml

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>