Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fly Cells Flock Together, Follow the Light

21.06.2010
Scientists at Johns Hopkins report using a laser beam to activate a protein that makes a cluster of fruit fly cells act like a school of fish turning in social unison, following the lead of the one stimulated with light.

The study of this unexpected cell movement, reported May 16 in Nature Cell Biology, holds potential importance for understanding embryonic development, wound healing and tumor metastasis — the process by which tumor cells acquire the ability to invade surrounding tissues and migrate long distances to colonize lymph nodes, bones and other distant organs.

The research dramatically demonstrates, the researchers say, the collective direction-sensing behavior of live cells in intact tissue, and a means of controlling protein behavior in a living organism by shining a focused beam of light precisely on the parts of cells where they want the protein to be active.

“Our little system in the fruit fly is an elegant example of cells behaving socially in their natural environment — surrounded by other cells,” says Denise Montell, Ph.D., a professor of biological chemistry and director of the Center for Cell Dynamics at the Johns Hopkins University School of Medicine. “You can’t capture this behavior if you look at individual cells in a culture dish.”

The “social” migrating behavior among a cluster of cells in the fly ovary surprised the research team, which was using a new laser light tool to manipulate protein activity.

“People tend to think of cancer as single cells breaking off from the tumor and migrating away,” Montell says, but it’s likely that this collective form of movement is important, at one phase or another, in the spread of tumors.”

A better understanding of how and why cells move can facilitate the development of new treatments not only for cancer but other disorders characterized by aberrant cell behavior.

Developed in the laboratory of Klaus Hahn, Ph.D., Thurman Professor of Pharmacology at the University of North Carolina at Chapel Hill, the light-activation technique previously had been shown to control cell movement in cultured mammalian cells. The Hopkins-led study provides proof of principle that a non-toxic light alone can activate a protein in live organisms, allowing researchers to safely control when and where cells move.

The Hopkins team conducted their study on a cluster of six so-called border cells in the fly ovary, cells the team has long studied and which are important to the fly because if they don’t migrate, females are sterile. In addition they serve as a model for understanding the mechanisms that control collective cell movements in general, which occur during normal embryonic development, wound healing and in tumor metastasis.

First, they genetically altered the border cells so that they were lacking the ability to respond to naturally occurring chemical attractants that normally control their movement. Then they used a fly protein known as Rac, which was fused to a photoactivatable (PA) plant protein, a creation engineered by Hahn’s lab. The PA-Rac, which remains inert in the dark, reacts to light because the plant protein changes shape and allows Rac to become active, causing the cells to move.

Because a beam of laser light can be much smaller than a cell, the team was able to activate Rac not only in one single cell, but also in one part of one cell, Montell says: “The other cool thing is this is reversible, so as soon as you take the light away, the PA-Rac wraps back up and turns itself off.”

Following up on previous research, the team wanted to find out if Rac would be sufficient to set the direction of movement of cells within live tissue.

When they shined a laser beam on various individual cells, the entire cluster responded by moving in directions that it wouldn’t under normal conditions: sideways, for instance, and even in reverse. In short, they followed the light.

“When we activated Rac in even one part of one of these cells — and not in the cell that would be the leader if all was normal — it was as if all the other cells said, Aha! You’ve got more Rac activity so we’re heading your way,” Montell says. “It’s amazing to me that somehow the cells sense each others’ levels of Rac activity and collectively decide which way to go.

Authors on the paper, in addition to Montell and Hahn, are Xiaobo Wang from Johns Hopkins and Yi Wu from UNC.

Funding was provided by the National Institutes of Health and the Cell Migration Consortium.

On the Web:

A video clip of a photo-activatable form of Rac is available at: http://www.icm.com/montell/MovieS5%28RacQ61Lforwardandrev%29.mov

Denise Montell Lab: http://www.hopkinsmedicine.org/dmontell/

Nature Cell Biology: http://www.nature.com/ncb/index.html

Cell Migration Consortium: http://www.cellmigration.org/index.shtml

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>