Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fluorescent proteins report electrical signals of brain cells

06.01.2010
A new fluorescent protein has illuminated complex neural networks of the hippocampus.

The protein was engineered by researchers at RIKEN to help analyze rapid electrical signals in populations of nerve cells and provides a unique window onto cellular-dynamics of neuronal webs. Further work with this protein is expected to dramatically extend the scope of research into brain function.

One of the key challenges in analyzing neural network dynamics is to monitor the activity of multiple neurons simultaneously. Voltage-sensitive fluorescent proteins (VSFP) make such analysis possible by encoding voltage sensors at the genetic level, enabling researchers to non-invasively target and visualize the activity of specific cell populations. VSFPs have, until now, suffered from interference with tissue background fluorescence and poor long-term expression in nerve cells.

A new series of red-shifted VSFPs, designed by a research team at the RIKEN Brain Science Institute, has overcome these limitations. By fusing the voltage-sensitive domain of a voltage-sensing phosphatase (Ci-VSP) to red-shifted fluorescent proteins, the researchers generated a series of VSFPs emitting different spectral colors. In a paper in the journal Chemistry & Biology, the researchers use these proteins to uncover details of the voltage-sensing mechanism in Ci-VSP, while also demonstrating the effectiveness of one variant (VSFP3.1_mOrange2) for analysis of electrical signals in hippocampal neurons.

The glimpse of the cellular-level dynamics of neuronal networks provided by VSFPs will vastly expand our understanding of information processing in the brain. By extending and clarifying the mechanisms of existing VSFPs, the new family of red-shifted proteins brings this potential one step closer to reality, enabling groundbreaking advances in understanding brain function.

Images associated with this press release are available on this link http://www.researchsea.com/html/article.php/aid/4828/cid/3/research/

new_fluorescent_proteins_report_electrical_signals_of_brain_cells.html

For more information, please contact:

Dr. Thomas Knöpfel
Laboratory for Neuronal Circuit Dynamics RIKEN Brain Science Institute
Tel: +81-(0)48-467-9740 / Fax: +81-(0)48-467-9739
Email: tknopfel@brain.riken.jp
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-467-9443
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>