Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Fluorescent Probes Detect Reactive Oxygen Species

16.12.2008
Researchers have created a new family of fluorescent probes called hydrocyanines that can be used to detect and measure the presence of reactive oxygen species. Reactive oxygen species are highly reactive metabolites of oxygen that have been implicated in a variety of inflammatory diseases, including cancer and atherosclerosis.

“We’ve shown that the hydrocyanines we developed are able to detect the reactive oxygen species, superoxide and the hydroxide radical, in living cells, tissue samples, and for the first time, in vivo,” said Niren Murthy, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Details of the hydrocyanine synthesis process and experimental results showing the ability of the dyes to detect reactive oxygen species in cells, tissues and mouse models were reported on December 8 in the online version of the journal Angewandte Chemie International Edition. This research is supported by the National Institutes of Health and the National Science Foundation.

The researchers have created six hydrocyanine dyes to date – hydro-Cy3, hydro-Cy5, hydro-Cy7, hydro-IR-676, hydro-IR-783 and hydro-ICG – but say that there are potentially 40 probes that could be created. The dyes vary in their ability to detect intracellular or extracellular reactive oxygen species and by their emission wavelength – from 560 to 830 nanometers.

Fluorescing at higher wavelengths allows the hydrocyanine dyes to be used for deep tissue imaging in vivo, a capability that dihydroethidium (DHE), the current “gold standard” for imaging reactive oxygen species, does not have. The dyes also have other advantages over DHE.

“When DHE comes into contact with reactive oxygen species, it oxidizes into ethidium bromide, a common mutagen, which means it’s toxic and can’t be injected inside the body,” explained Murthy. “DHE also auto-oxidizes in the presence of aqueous solutions, which creates high levels of background fluorescence and interferes with reactive oxygen species measurements.”

Hydrocyanines are also simple and quick to synthesize, according to Coulter Department postdoctoral fellow Kousik Kundu. Sodium borohydride is added to commercially available cyanine dyes and the solvent is removed – the one-step process takes less than five minutes.

W. Robert Taylor, a professor in the Coulter Department and Emory’s Division of Cardiology, and Emory postdoctoral fellow Sarah Knight, tested the ability of the dyes to detect reactive oxygen species inside of cells and animals.

For their first experiment, they tested the ability of hydro-Cy3, which has an emission wavelength of 560 nanometers, to detect reactive oxygen species production in the aortic smooth muscle cells of rats. They incubated the cells with hydro-Cy3 and angiotensin II, which is a stimulator of reactive oxygen species that is implicated in the development of atherosclerosis and hypertension.

Results showed that cells incubated with angiotensin II and hydro-Cy3 displayed intense intracellular fluorescence, whereas control cells incubated with hydro-Cy3 and phosphate buffer saline displayed significantly lower fluorescence. When they introduced TEMPOL, a molecule that intercepts the reactive oxygen species so that they cannot interact, the cells treated with angiotensin II and hydro-Cy3 displayed a dramatic decrease in fluorescence.

“This test demonstrated that the cellular fluorescence was due to intracellular reactive oxygen species production,” said Murthy. “What was even more exciting was that we saw that once the hydrocyanine dye was oxidized, it stayed in the cell and the fluorescence was not extinguished by cellular metabolism, which is what happens with DHE.”

The researchers also investigated the ability of hydro-Cy3 to image reactive oxygen species production in live mouse aorta tissue, which exhibit a physiological environment that closely resembles in vivo conditions. Explants were incubated with hydro-Cy3 and either lipopolysaccharide endotoxin (LPS), an inflammatory molecule that binds to aortic cells and causes reactive oxygen species to be produced, or the control saline solution.

Samples treated with hydro-Cy3 and LPS showed fluorescence intensity almost four times greater than explants treated with hydro-Cy3 and saline. Once more, adding TEMPOL to the sample with hydro-Cy3 and LPS decreased the fluorescence to a level comparable to the control saline explants.

After the successful cell culture and tissue experiments, the researchers progressed to in vivo mouse imaging studies. Hydro-Cy7 was selected for the in vivo tests because of its higher emission wavelength of 760 nanometers. LPS-treated mice showed twofold greater fluorescence intensity in the abdominal area than those treated with saline.

“Given their ability to detect reactive oxygen species in living cells, tissue samples and in vivo, we believe these dyes will enhance the ability of researchers to measure reactive oxygen species,” noted Murthy.

The researchers’ ultimate goal, though, is to use the dyes in clinical applications.

“We want to use these hydrocyanine dyes to detect overproduction of reactive oxygen species at an early stage inside the body so that we can identify patients who are more likely to suffer from these inflammatory diseases,” added Murthy.

Technical Contact: Niren Murthy (404-385-5145);
E-mail: (niren.murthy@bme.gatech.edu)

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>