Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent Dye Hydrogen Swap Improves Detection, Shelf Life

22.07.2010
By swapping out one specific hydrogen atom for an isotope twice as heavy, researchers have increased the shelf life and detection ability of fluorescent probes that are essential to studying a variety of inflammatory diseases, including cancer and atherosclerosis. The probes detect and measure reactive oxygen species, which play an important role in disease processes.

“By replacing a hydrogen atom with a deuterium atom during the synthesis of several fluorescent probes, we increased the stability and shelf life of the dyes, and also improved their ability to detect smaller concentrations of reactive oxygen species,” said Niren Murthy, associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Deuterium is an isotope of hydrogen that has a single proton and single neutron in its nucleus. Its atomic weight is therefore twice that of the much more common hydrogen atom, which lacks a neutron.

When Murthy and Coulter Department postdoctoral fellow Kousik Kundu designed and synthesized various fluorescent probes with deuterium instead of hydrogen, the dyes were not as susceptible to spontaneous degradation by air and light as their hydrogen counterparts, which made them significantly more accurate at detecting reactive oxygen species in cells and animals. The researchers studied probes that included dihydroethidium (DHE) -- the current “gold standard” for imaging reactive oxygen species -- and hydrocyanines.

Details of the research were published in the early view of the journal Angewandte Chemie International on July 20. The work was sponsored by the National Institutes of Health and the National Science Foundation.

The study showed that while the standard fluorescent probe DHE was 60 percent oxidized by air and light after 10 days in storage, its deuterium counterpart was only 20 percent oxidized during that same time. These findings could have significant implications for companies that produce fluorescent probes and other compounds, according to Murthy, because commercializing and shipping the modified probes will be easier.

Another advantage for scientists using deuterium-containing fluorescent probes is that after reacting with reactive oxygen species, the probes produce the same fluorescent dye that their hydrogen counterparts produce.

“This is important from a practical standpoint because scientists have developed protocols with DHE and other fluorescent probes that they will be able to continue using by simply substituting the more stable and accurate deuterated version into the assay,” explained Murthy.

Fluorescent probes detect reactive oxygen species by undergoing a chemical process called amine oxidation. The mechanism of amine oxidation for reactions involving reactive oxygen species differs significantly from reactions involving air and light. In addition, reactions with deuterium-containing probes occur at a much slower rate because deuterium is a heavier atom.

Murthy and Kundu decided to use these mechanistic and kinetic differences to selectively slow the oxidation of the fluorescent probes by air and light while maintaining their reactivity with cellular reactive oxygen species. To test the selective suppression of oxidation, the researchers examined the kinetic isotope effect -- a value that measures the ratio of the rate of a chemical reaction with hydrogen compared to the same reaction with deuterium to air and radical oxidation.

They investigated the ability of the deuterium-containing probes to compete with a common enzyme for superoxide -- a reactive oxygen species that is a form of molecular oxygen with one extra electron. The researchers found that the probes’ oxidation mechanism with superoxide was different than for spontaneous oxidation because the two reactions exhibited different values for the kinetic isotope effect. Kinetic isotope effect values for spontaneous oxidation ranged from 3.7-4.7, whereas values for superoxide oxidation were between 2.5-2.8 for many different types of deuterium-containing fluorescent dyes, including DHE.

“This was the key experiment that demonstrated that there was a much larger difference in the way the hydrogen and deuterium compounds reacted to spontaneous oxidation than how they dealt with oxidation by a reactive oxygen species,” explained Murthy.

Murthy’s collaborators W. Robert Taylor and Sarah Knight tested the ability of both types of dyes to detect reactive oxygen species inside cells. Since the deuterium-containing probes were less affected by air and light and background fluorescence was suppressed, the researchers found that the dyes more accurately detected small amounts of reactive oxygen species. Knight is an Emory University postdoctoral fellow and Taylor is a professor in the Coulter Department, the director of Emory’s Division of Cardiology, and a member of the Atlanta VA Medical Center’s Division of Cardiology.

Following the cellular experiments, Knight and Coulter Department postdoctoral fellow Seungjun Lee investigated whether the kinetic isotope effect would similarly improve the ability of H-Cy7 -- a hydrocyanine dye developed by Murthy -- to detect radical oxidants in vivo. In experiments, the deuterium-containing version of Cy7 generated a 10-fold difference in fluorescence intensity versus control probes compared to only a five-fold difference for the hydrogen probe.

“This new process of replacing hydrogen with deuterium is potentially valuable because the positive results are universal among many different types and classes of probes,” explained Murthy. “All of the modified probes generated less background fluorescence, while maintaining high reactivity with reactive oxygen species and generating similar levels of fluorescence in cells and animals stimulated to produce them.”

Murthy indicated that although the kinetic isotope effect had been used to improve drug stability, it has never been used to improve probe development.

“Based on our results, we anticipate numerous applications of deuterated radical oxidant probes in biology and an increased application of the kinetic isotope effect in biological probe development,” added Murthy.

This project is supported by the National Science Foundation (NSF) (Award Nos. EEC-9731643 and NSF Career BES-0546962) and the National Institutes of Health (NIH) (Award Nos. UO1 HL80711-01, R21 EB006418, RO1 HL096796-01 and RO1 HL090584). The content is solely the responsibility of the principal investigator and does not necessarily represent the official views of the NSF or NIH.

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>