Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent compounds make tumors glow

29.04.2010
A series of novel imaging agents could light up tumors as they begin to form – before they turn deadly – and signal their transition to aggressive cancers.

The compounds – fluorescent inhibitors of the enzyme cyclooxygenase-2 (COX-2) – could have broad applications for detecting tumors earlier, monitoring a tumor's transition from pre-malignancy to more aggressive growth, and defining tumor margins during surgical removal.

"We're very excited about these new agents and are moving forward to develop them for human clinical trials," said Lawrence Marnett, Ph.D., the leader of the Vanderbilt University team that developed the compounds, which are described in the May 1 issue of Cancer Research.

COX-2 is an attractive target for molecular imaging. It's not found in most normal tissues, and then it is "turned on" in inflammatory lesions and tumors, Marnett explained.

"COX-2 is expressed at the earliest stages of pre-malignancy – in pre-malignant lesions, but not in surrounding normal tissue – and as a tumor grows and becomes increasingly malignant, COX-2 levels go up," Marnett said.

Compounds that bind selectively to COX-2 – and carry a fluorescent marker – should act as "beacons" for tumor cells and for inflammation.

Marnett and his colleagues previously demonstrated that fluorescent COX-2 inhibitors – which they have now dubbed "fluorocoxibs" – were useful probes for protein binding, but their early molecules were not appropriate for cellular or in vivo imaging.

"It was a real challenge to make a compound that is COX-2 selective (doesn't bind to the related COX-1 enzyme), has desirable fluorescence properties, and gets to the tissue in vivo," Marnett said.

To develop such compounds, Jashim Uddin, Ph.D., research assistant professor of Biochemistry, started with the "core" chemical structure of the anti-inflammatory medicines indomethacin and celecoxib. He then tethered various fluorescent parts to the core structure, ultimately synthesizing more than 200 compounds. The group tested each compound for its interaction with purified COX-2 and COX-1 proteins and then assessed promising compounds for COX-2 selectivity and fluorescence in cultured cells and in animals. Two compounds made the cut.

In studies led by senior research specialist Brenda Crews, the investigators evaluated the potential of these compounds for in vivo imaging using three different animal models: irritant-induced inflammation in the mouse foot pad; human tumors grafted into mice; and spontaneous tumors in mice.

In each case, the two fluorocoxibs – injected intravenously or into the abdominal cavity – accumulated in the inflamed or tumor tissue, giving it a fluorescent "glow."

To move the agents toward human clinical trials, the team will conduct additional toxicology and pharmacology testing and develop the tools for particular settings that are amenable to fluorescence imaging, such as skin or sites accessible by endoscope (e.g., esophagus and colon).

In the esophagus, for example, a pre-malignant lesion called Barrett's esophagus can transition to a low-grade dysplasia, then to a high-grade dysplasia, and finally to malignant cancer, which has a one-year survival of only 10 percent. For a patient with Barrett's esophagus, detecting the transition to dysplasia is critical. The problem is that dysplasia is not visibly different from the pre-malignant Barrett's lesion, so physicians collect random biopsy samples – which might miss areas of dysplasia.

"If instead, the physician could look through the endoscope and see a nest of cells lighting up with these fluorocoxibs – that is where they could biopsy," Marnett said.

"Because COX-2 levels increase during cancer progression in virtually all solid tumors, we think these imaging tools will have many, many different applications."

The investigators also are exploring using the compounds to target delivery of chemotherapeutic drugs directly to COX-2-expressing cells – by tethering an anti-cancer drug instead of a fluorescent marker to the COX-2 inhibitor core.

The National Institutes of Health, the Medical Free-Electron Laser Program of the U.S. Department of Defense, XL TechGroup and the New York Crohn's Foundation supported the research. The Vanderbilt Cell Imaging Shared Resource and the Vanderbilt University Institute of Imaging Science enabled the cellular and animal imaging.

Marnett is director of the A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, director of the Vanderbilt Institute of Chemical Biology, Mary Geddes Stahlman Professor of Cancer Research, and professor of Biochemistry, Chemistry, and Pharmacology.

Craig Boerner | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>