Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Everything Flows in Rapid Diagnostic Tests

12.04.2012
A microfluidic electrochemical amplification technique allows for the rapid, sensitive, and quantitative detection of pathogenic DNA

Our ability to detect pathogens has become quite good, but it usually requires complex laboratory techniques. Sometimes we need a quick result, or there is no laboratory nearby.

Portable and fast methods of detection that are also sensitive, reliable, quantitative, and effective over a broad range of concentrations are thus highly desirable. In the journal Angewandte Chemie, American researchers have now introduced a new approach for a lab-on-chip technique for the detection of pathogens by means of their genetic material. The method is so sensitive that it was able to detect as few as 16 copies of DNA from salmonella—in less than an hour.

Since the introduction of the polymerase chain reaction (PCR)—which has become the primary method for the duplication of genetic material—into clinical diagnosis, the detection of many pathogens has become significantly more reliable and sensitive. However, even PCR requires a great deal of equipment and time, involving bulky apparatus, precisely maintained temperature cycles, and successive addition of reagents. All of this demands a certain expertise from the operator.

A team led by Kuangwen Hsieh and H. Tom Soh at the University of California, Santa Barbara (USA) chose to use a newer alternative to PCR, loop-mediated isothermal amplification, abbreviated as LAMP. This method is very fast, sensitive, and selective for the desired pathogen. It requires no temperature cycles upon addition of reagents. The team combined LAMP with electrochemical detection by means of a microfluidic chip to make MEQ-LAMP, microfluidic electrochemical quantitative LAMP.

In a tiny chamber on the chip, enzymes generate copies of the DNA contained in the sample. Six different primers, single-stranded fragments of the target DNA with a start sequence for the enzymes, act as the starting point. Methylene blue, a dye that lodges in DNA strands, serves as the electrochemical detection reagent. At first, most of the methylene blue molecules are free in the solution and come into contact with electrodes that are mounted in the chamber.

When a cyclic voltage is applied, redox reactions between the electrode and the methylene blue produce a current. The more copies of the DNA that are produced, the more methylene blue is lodged in the strands, making it unavailable to the electrodes, thus causing the current to decrease. This goes faster when more pathogenic DNA strands are contained in the sample. The time at which the current signal is at its maximum can be determined so accurately that the researchers can use it to quantify the concentration of pathogen.

A future chip could support multiple chambers for the parallel detection of different pathogens. This could then be used as a prototype for the development of effective rapid tests for point-of-care diagnosis, food safety, environmental monitoring, and the fight against biological weapons.

About the Author
Dr. H. Tom Soh is the Ruth Garland Professor of Materials and Mechanical Engineering at the University of California, Santa Barbara (UCSB), USA. His research focuses on developing novel methods in analytical biotechnology and directed evolution. His work has been recognized with numerous international awards, and he is a Guggenheim and Humboldt fellow.
Author: H. Tom Soh, University of California, Santa Barbara (USA), http://www.engr.ucsb.edu/sohlab/locations.html
Title: Rapid, Sensitive, and Quantitative Detection of Pathogenic DNA at the Point of Care through Microfluidic Electrochemical Quantitative Loop-Mediated Isothermal Amplification

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201109115

H. Tom Soh | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.engr.ucsb.edu/sohlab/locations.html

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>