Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where Did Flowers Come From?

14.02.2011
The University at Buffalo is a key partner in a $7.3 million, multi-institution collaboration to explore the origins of all flowers by sequencing the genome of Amborella, a unique species that one researcher has nicknamed the “platypus of flowering plants.”

Amborella is an understory shrub or small tree found in only one place on the planet: the Pacific islands of New Caledonia. The plant, a direct descendant of the common ancestor of all flowering plants, is the single known living species on the earliest branch of the genetic tree of life of flowering plants.

As such, Amborella is a molecular living fossil, said Victor Albert, UB Empire Innovation Professor in biological sciences and a co-principal investigator on the Amborella genome project.

View a video interview with Albert here. http://www.youtube.com/watch?v=dDfW-uTs1i0

In the same way that the DNA of the platypus, a mammal of ancient lineage, can help us study the evolution of all mammals, the DNA of Amborella can help us learn about the evolution of all flowers, Albert said.

Specifically, by comparing the genetic make-up of Amborella to that of newer species, biologists will be able to study a diverse range of plant characteristics, from how flowers resist drought and how fruits mature to how critical crops might respond to global warming.

“This is work that’s related to the human condition in various ways. We’re talking about food, fiber, fuel and the future,” said Albert, a faculty member in UB’s New York State Center of Excellence in Bioinformatics and Life Sciences. “Most of our food comes from flowers. All the fruit crops and grains are flowering plants. Cotton fiber is from fruit, and fruits come from flowers. Soybeans are fruits. Rice comes from the seed of a flowering plant.”

Albert’s co-investigators include Claude W. dePamphilis at Pennsylvania State University, who is leading the research; Hong Ma and Stephan Schuster at Penn State; Douglas E. Soltis, Pamela S. Soltis and W. Brad Barbazuk at the University of Florida; Steven D. Rounsley at the University of Arizona; James Leebens-Mack at the University of Georgia; Jeffrey Palmer at Indiana University; and Susan Wessler at the University of California, Riverside. The National Science Foundation is funding the project.

The team plans to complete and publish a draft sequence of the Amborella genome this year, Albert said. To share results with scientists around the world, the group will make the genome available online.

“The Amborella genome and the strategies we are using to obtain and analyze the genome will provide not only a unique scientific resource with broad impacts on plant biology, but it also will provide excellent opportunities to demonstrate the utility of an evolutionary perspective across the biological sciences,” said Albert, who is also a member of teams sequencing the genomes of coffee and avocado.

The Amborella project builds on another floral genetics project that dePamphilis of Penn State led. In that earlier study, he and partners including Albert sought information on the origins of flowers by comparing active genes of flowering plants including Amborella and non-flowering plants called gymnosperms.

The team published major findings in the Proceedings of the National Academy of Sciences in December, reporting that genetic programming found in gymnosperm cones gave rise to flowering plants.

The Amborella genome project is the natural next step: Now that we know more about how the first flowers evolved, what can we learn about how they diversified? With a fossil record dating to just over 130 million years ago, flowering plants now include as many as 400,000 species on land and in water.

Sequencing a genome involves determining the order in which nucleotide bases -- adenine, guanine, cytosine and thymine -- appear in strands of DNA.

To complete this task, the Amborella team is employing “shotgun” technology that breaks DNA into tiny bits, sequences those bits simultaneously and reassembles them into a long chain. The approach is cheaper and quicker than older methods that require scientists to sequence entire strands of DNA in order, beginning at one end and moving to the other.

At UB, Albert and fellow researchers will use visual mapping to check their colleagues’ work, examining large pieces of sequenced DNA under a microscope to make sure those pieces fit correctly on Amborella chromosomes. (Though scientists do not know the exact sequence of the Amborella genome, they do already know how large chunks of DNA map to one another.)

UB researchers will also compare Amborella’s genetic material to that of other plants, including rice, the cucumber, the tomato and the potato.

The goal of these comparative studies is to learn more about whole-genome duplication, a commonplace process in flowers in which a new plant inherits an extra, duplicate copy of its parents’ DNA. Because redundant copies of genes can evolve to develop new functions, scientists think that whole-genome duplication may be behind “Darwin’s abominable mystery” -- the abrupt proliferation of new varieties of flowering plants in fossil records dating to the Cretaceous period.

Amborella has relatively few chromosomes, leading biologists including Albert to conclude that the species may never have undergone such a doubling.

Besides research, the Amborella genome project also includes plans for creating education, training and mentoring opportunities for high school students, undergraduates, graduate students and postdoctoral researchers.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | Newswise Science News
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>