Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Where Did Flowers Come From?

The University at Buffalo is a key partner in a $7.3 million, multi-institution collaboration to explore the origins of all flowers by sequencing the genome of Amborella, a unique species that one researcher has nicknamed the “platypus of flowering plants.”

Amborella is an understory shrub or small tree found in only one place on the planet: the Pacific islands of New Caledonia. The plant, a direct descendant of the common ancestor of all flowering plants, is the single known living species on the earliest branch of the genetic tree of life of flowering plants.

As such, Amborella is a molecular living fossil, said Victor Albert, UB Empire Innovation Professor in biological sciences and a co-principal investigator on the Amborella genome project.

View a video interview with Albert here.

In the same way that the DNA of the platypus, a mammal of ancient lineage, can help us study the evolution of all mammals, the DNA of Amborella can help us learn about the evolution of all flowers, Albert said.

Specifically, by comparing the genetic make-up of Amborella to that of newer species, biologists will be able to study a diverse range of plant characteristics, from how flowers resist drought and how fruits mature to how critical crops might respond to global warming.

“This is work that’s related to the human condition in various ways. We’re talking about food, fiber, fuel and the future,” said Albert, a faculty member in UB’s New York State Center of Excellence in Bioinformatics and Life Sciences. “Most of our food comes from flowers. All the fruit crops and grains are flowering plants. Cotton fiber is from fruit, and fruits come from flowers. Soybeans are fruits. Rice comes from the seed of a flowering plant.”

Albert’s co-investigators include Claude W. dePamphilis at Pennsylvania State University, who is leading the research; Hong Ma and Stephan Schuster at Penn State; Douglas E. Soltis, Pamela S. Soltis and W. Brad Barbazuk at the University of Florida; Steven D. Rounsley at the University of Arizona; James Leebens-Mack at the University of Georgia; Jeffrey Palmer at Indiana University; and Susan Wessler at the University of California, Riverside. The National Science Foundation is funding the project.

The team plans to complete and publish a draft sequence of the Amborella genome this year, Albert said. To share results with scientists around the world, the group will make the genome available online.

“The Amborella genome and the strategies we are using to obtain and analyze the genome will provide not only a unique scientific resource with broad impacts on plant biology, but it also will provide excellent opportunities to demonstrate the utility of an evolutionary perspective across the biological sciences,” said Albert, who is also a member of teams sequencing the genomes of coffee and avocado.

The Amborella project builds on another floral genetics project that dePamphilis of Penn State led. In that earlier study, he and partners including Albert sought information on the origins of flowers by comparing active genes of flowering plants including Amborella and non-flowering plants called gymnosperms.

The team published major findings in the Proceedings of the National Academy of Sciences in December, reporting that genetic programming found in gymnosperm cones gave rise to flowering plants.

The Amborella genome project is the natural next step: Now that we know more about how the first flowers evolved, what can we learn about how they diversified? With a fossil record dating to just over 130 million years ago, flowering plants now include as many as 400,000 species on land and in water.

Sequencing a genome involves determining the order in which nucleotide bases -- adenine, guanine, cytosine and thymine -- appear in strands of DNA.

To complete this task, the Amborella team is employing “shotgun” technology that breaks DNA into tiny bits, sequences those bits simultaneously and reassembles them into a long chain. The approach is cheaper and quicker than older methods that require scientists to sequence entire strands of DNA in order, beginning at one end and moving to the other.

At UB, Albert and fellow researchers will use visual mapping to check their colleagues’ work, examining large pieces of sequenced DNA under a microscope to make sure those pieces fit correctly on Amborella chromosomes. (Though scientists do not know the exact sequence of the Amborella genome, they do already know how large chunks of DNA map to one another.)

UB researchers will also compare Amborella’s genetic material to that of other plants, including rice, the cucumber, the tomato and the potato.

The goal of these comparative studies is to learn more about whole-genome duplication, a commonplace process in flowers in which a new plant inherits an extra, duplicate copy of its parents’ DNA. Because redundant copies of genes can evolve to develop new functions, scientists think that whole-genome duplication may be behind “Darwin’s abominable mystery” -- the abrupt proliferation of new varieties of flowering plants in fossil records dating to the Cretaceous period.

Amborella has relatively few chromosomes, leading biologists including Albert to conclude that the species may never have undergone such a doubling.

Besides research, the Amborella genome project also includes plans for creating education, training and mentoring opportunities for high school students, undergraduates, graduate students and postdoctoral researchers.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>