Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where Did Flowers Come From?

14.02.2011
The University at Buffalo is a key partner in a $7.3 million, multi-institution collaboration to explore the origins of all flowers by sequencing the genome of Amborella, a unique species that one researcher has nicknamed the “platypus of flowering plants.”

Amborella is an understory shrub or small tree found in only one place on the planet: the Pacific islands of New Caledonia. The plant, a direct descendant of the common ancestor of all flowering plants, is the single known living species on the earliest branch of the genetic tree of life of flowering plants.

As such, Amborella is a molecular living fossil, said Victor Albert, UB Empire Innovation Professor in biological sciences and a co-principal investigator on the Amborella genome project.

View a video interview with Albert here. http://www.youtube.com/watch?v=dDfW-uTs1i0

In the same way that the DNA of the platypus, a mammal of ancient lineage, can help us study the evolution of all mammals, the DNA of Amborella can help us learn about the evolution of all flowers, Albert said.

Specifically, by comparing the genetic make-up of Amborella to that of newer species, biologists will be able to study a diverse range of plant characteristics, from how flowers resist drought and how fruits mature to how critical crops might respond to global warming.

“This is work that’s related to the human condition in various ways. We’re talking about food, fiber, fuel and the future,” said Albert, a faculty member in UB’s New York State Center of Excellence in Bioinformatics and Life Sciences. “Most of our food comes from flowers. All the fruit crops and grains are flowering plants. Cotton fiber is from fruit, and fruits come from flowers. Soybeans are fruits. Rice comes from the seed of a flowering plant.”

Albert’s co-investigators include Claude W. dePamphilis at Pennsylvania State University, who is leading the research; Hong Ma and Stephan Schuster at Penn State; Douglas E. Soltis, Pamela S. Soltis and W. Brad Barbazuk at the University of Florida; Steven D. Rounsley at the University of Arizona; James Leebens-Mack at the University of Georgia; Jeffrey Palmer at Indiana University; and Susan Wessler at the University of California, Riverside. The National Science Foundation is funding the project.

The team plans to complete and publish a draft sequence of the Amborella genome this year, Albert said. To share results with scientists around the world, the group will make the genome available online.

“The Amborella genome and the strategies we are using to obtain and analyze the genome will provide not only a unique scientific resource with broad impacts on plant biology, but it also will provide excellent opportunities to demonstrate the utility of an evolutionary perspective across the biological sciences,” said Albert, who is also a member of teams sequencing the genomes of coffee and avocado.

The Amborella project builds on another floral genetics project that dePamphilis of Penn State led. In that earlier study, he and partners including Albert sought information on the origins of flowers by comparing active genes of flowering plants including Amborella and non-flowering plants called gymnosperms.

The team published major findings in the Proceedings of the National Academy of Sciences in December, reporting that genetic programming found in gymnosperm cones gave rise to flowering plants.

The Amborella genome project is the natural next step: Now that we know more about how the first flowers evolved, what can we learn about how they diversified? With a fossil record dating to just over 130 million years ago, flowering plants now include as many as 400,000 species on land and in water.

Sequencing a genome involves determining the order in which nucleotide bases -- adenine, guanine, cytosine and thymine -- appear in strands of DNA.

To complete this task, the Amborella team is employing “shotgun” technology that breaks DNA into tiny bits, sequences those bits simultaneously and reassembles them into a long chain. The approach is cheaper and quicker than older methods that require scientists to sequence entire strands of DNA in order, beginning at one end and moving to the other.

At UB, Albert and fellow researchers will use visual mapping to check their colleagues’ work, examining large pieces of sequenced DNA under a microscope to make sure those pieces fit correctly on Amborella chromosomes. (Though scientists do not know the exact sequence of the Amborella genome, they do already know how large chunks of DNA map to one another.)

UB researchers will also compare Amborella’s genetic material to that of other plants, including rice, the cucumber, the tomato and the potato.

The goal of these comparative studies is to learn more about whole-genome duplication, a commonplace process in flowers in which a new plant inherits an extra, duplicate copy of its parents’ DNA. Because redundant copies of genes can evolve to develop new functions, scientists think that whole-genome duplication may be behind “Darwin’s abominable mystery” -- the abrupt proliferation of new varieties of flowering plants in fossil records dating to the Cretaceous period.

Amborella has relatively few chromosomes, leading biologists including Albert to conclude that the species may never have undergone such a doubling.

Besides research, the Amborella genome project also includes plans for creating education, training and mentoring opportunities for high school students, undergraduates, graduate students and postdoctoral researchers.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | Newswise Science News
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>