Florida State University chemist may hold key to building a better toxin mousetrap

Featured on the cover of the prestigious Journal of the American Chemical Society (JACS), Sourav Saha's specialized work to strip electrons from the toxic chemical known as fluoride is producing a variety of unique results.

“I started out with the very basic premise of trying to find new ways to detect toxic fluoride in solutions,” said Saha, an assistant professor of chemistry at Florida State. “As I got further into that work I was able to create a compound that could actually strip the electrons right off the molecule, producing a variety of tangible benefits such as toxin detection and removal.”

Saha's initial fluoride-detection work led to a $100,000 grant from the Petroleum Research Foundation to further explore the possibilities of his research. Using that money, he was able to bring in additional expertise and build his “fluoride-robbing” compound that is the central feature of the work featured on the JACS cover.

“This work is very exciting and novel because the results are surprising,” said Timothy Logan, chairman of the Department of Chemistry and Biochemistry at Florida State. “Molecules always have affinity for electrons, with some molecules having a greater affinity than others. Flouride has the highest electron affinity of all, so the ability to strip off electrons from fluoride, especially in the presence of other molecules with lower electron affinity, is truly unique.”

Although Saha is excited about the possibilities of his new compound in toxin cleanup, he sees a huge variety of potential applications for his research.

“I think toxin removal is one of the most obvious and relatable benefits my work could lead to, but in reality, there are many additional implications this work could have on daily life,” Saha said. “For instance, we could develop this research to create all new types of plastics that could exhibit unique qualities, or improve the effectiveness of devices, such as batteries, that are used to store and transfer energy.”

To read more about Saha's work in the JACS, visit http://pubs.acs.org/doi/abs/10.1021/ja303173n. To learn more about Saha, visit http://www.chem.fsu.edu/bio.php?id=838.

Florida State University, rated RU/VH (“Research University/Very High” research activity) by the Carnegie Foundation for the Advancement of Teaching, is one of the nation's leading research and creative-activity institutions. With nearly $204 million in external research funding in 2011 and a large collection of unique, cutting-edge scientific and performing arts facilities, Florida State offers faculty and students unparalleled opportunities to expand the frontiers of knowledge and discovery in their areas of expertise. To learn more about Florida State research, locate a subject matter expert or arrange an interview on a specific research or creative topic, contact Tom Butler at tbutler@admin.fsu.edu or Florida State's News and Research Communications Office at (850) 644-4030.

CONTACT: Tom Butler, University Communications (850) 644-8634; tbutler@admin.fsu.edu

Media Contact

Tom Butler EurekAlert!

More Information:

http://www.fsu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors