Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flips, flops and cartwheels

09.09.2009
Scientists discover gecko tail has a mind of its own

Geckos and other lizards have long been known for their incredible ability to shed their tails as a decoy for predators, but little is known about the movements and what controls the tail once it separates from the lizard's body.

Anthony Russell of the University of Calgary and Tim Higham of Clemson University in South Carolina are closer to solving this mystery as outlined in a paper they co-authored published in the journal Biology Letters.

The scientists demonstrate that tails exhibit not only rhythmic but also complex movements, including flips, jumps and lunges, after the tails are shed. Although one previous study has looked at movement of the tail after it is severed, no study up to this point has quantified movement patterns of the tail by examining the relationship between such patterns and muscular activity.

The new findings are significant because Higham and Russell's discoveries indicate that the lizard tail can provide a model for studying the complex functions of the spinal cord and the effects of spinal cord injuries.

"Much is known about the ecological ramifications of tail loss, such as distracting predators, storing energy reserves and establishing social status but little is known about the pattern and control of movement of automized gecko tails," says Russell a biological sciences professor at the U of C. "What we've discovered is that the tail does not simply oscillate in a repetitive fashion, but has an intricate repertoire of varied and highly complex movements, including acrobatic flips up to three centimetres in height."

Higham, a former U of C student and now an assistant professor of biological sciences at Clemson, says more study needs to be done.

"An intriguing, and as yet unanswered, question is what is the source of the stimulus is that initiates complex movements in the shed tails of leopard geckos," says Higham. "The most plausible explanation is that the tail relies on sensory feedback from the environment. Sensors on its surface may tell it to jump, pivot or travel in a certain direction."

The ability of an animal, or part of an animal, to move without the active control of higher centres in the brain is well known, but this generally occurs as a result of traumatic physical injury. Tails of lizards are shed under the animal's own control. Because of this, the behaviour of the shed part has adaptive evolutionary importance and its actions are programmed to assist in the owner's survival. The movements are coordinated by the part of the spinal cord that is housed in the tail. The isolated tail serves as a vehicle for studying the ways that nerves and muscles act together to generate controlled but complex outputs in the absence of the influence of the brain.

"The automized gecko tail may be an excellent model for understanding the spontaneous activity that is sometimes observed following partial or complete spinal cord injury," says Russell.

The new study shows that the signals responsible for movements of the shed tail begin at the very far end of the tail, indicating that there is a control centre located there that is likely overridden by higher centres until the tail is shed, at which point its potential is realized.

The scientists' paper will be published in the journal Biology Letters on Wed., Sept. 9, at 00:01 BST. It can be found online at: http://rsbl.royalsocietypublishing.org/.

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>