Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Flips, flops and cartwheels

Scientists discover gecko tail has a mind of its own

Geckos and other lizards have long been known for their incredible ability to shed their tails as a decoy for predators, but little is known about the movements and what controls the tail once it separates from the lizard's body.

Anthony Russell of the University of Calgary and Tim Higham of Clemson University in South Carolina are closer to solving this mystery as outlined in a paper they co-authored published in the journal Biology Letters.

The scientists demonstrate that tails exhibit not only rhythmic but also complex movements, including flips, jumps and lunges, after the tails are shed. Although one previous study has looked at movement of the tail after it is severed, no study up to this point has quantified movement patterns of the tail by examining the relationship between such patterns and muscular activity.

The new findings are significant because Higham and Russell's discoveries indicate that the lizard tail can provide a model for studying the complex functions of the spinal cord and the effects of spinal cord injuries.

"Much is known about the ecological ramifications of tail loss, such as distracting predators, storing energy reserves and establishing social status but little is known about the pattern and control of movement of automized gecko tails," says Russell a biological sciences professor at the U of C. "What we've discovered is that the tail does not simply oscillate in a repetitive fashion, but has an intricate repertoire of varied and highly complex movements, including acrobatic flips up to three centimetres in height."

Higham, a former U of C student and now an assistant professor of biological sciences at Clemson, says more study needs to be done.

"An intriguing, and as yet unanswered, question is what is the source of the stimulus is that initiates complex movements in the shed tails of leopard geckos," says Higham. "The most plausible explanation is that the tail relies on sensory feedback from the environment. Sensors on its surface may tell it to jump, pivot or travel in a certain direction."

The ability of an animal, or part of an animal, to move without the active control of higher centres in the brain is well known, but this generally occurs as a result of traumatic physical injury. Tails of lizards are shed under the animal's own control. Because of this, the behaviour of the shed part has adaptive evolutionary importance and its actions are programmed to assist in the owner's survival. The movements are coordinated by the part of the spinal cord that is housed in the tail. The isolated tail serves as a vehicle for studying the ways that nerves and muscles act together to generate controlled but complex outputs in the absence of the influence of the brain.

"The automized gecko tail may be an excellent model for understanding the spontaneous activity that is sometimes observed following partial or complete spinal cord injury," says Russell.

The new study shows that the signals responsible for movements of the shed tail begin at the very far end of the tail, indicating that there is a control centre located there that is likely overridden by higher centres until the tail is shed, at which point its potential is realized.

The scientists' paper will be published in the journal Biology Letters on Wed., Sept. 9, at 00:01 BST. It can be found online at:

Leanne Yohemas | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>