Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flipping the stress tolerance switch

24.09.2009
Japanese researchers have unlocked the secret to ABA, a single plant hormone which play a key role to developing stress resistant crops.

Many plants have evolved to endure harsh environmental conditions, yet the detailed mechanisms of plant stress resistance have long remained unclear. A single plant hormone, abscisic acid (ABA), has been known to play a central regulatory role in such resistance, holding the key to advances in the development of stress-resistant crops.

In results published this month in the Proceedings of the National Academy of Sciences, research teams at RIKEN and the Japan Science and Technology Agency (JST) have for the first time unlocked the secret to ABA-mediated signaling. The teams demonstrated that a protein phosphatase (PP2C) interacts with a protein kinase (SnRK2) to regulate the elusive ABA signal transmission pathway, acting as an ON/OFF switch.

Combining this discovery with the recent finding that PP2C activity is regulated by ABA receptors (RCAR and PYR), the researchers went on to trace the ABA signal pathway itself. In conditions of high environmental stress, they showed that ABA production leads ABA receptors to suppress PP2C, which in turn results in activation of SnRK2, flipping the ABA “switch” and triggering various stress response mechanisms.

Elucidation of the mechanism underlying ABA signaling has wide-ranging implications for plant science. In addition to its role in regulating resistance to drought, salt and cold, ABA contributes to defending against disease and pests, while also functioning at various stages of plant development. Applications are anticipated in the development of stress-resistant crops, in the improvement of seed stability, and in the control of pre-harvest sprouting.

For more information, please contact:

Dr. Taishi Umezawa
Gene Discovery Research Group
RIKEN Plant Science Center
Tel: +81-(0) 29-836-4359 / fax: +81-(0) 29-836-9060
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-467-9443
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>