Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flipping the stress tolerance switch

24.09.2009
Japanese researchers have unlocked the secret to ABA, a single plant hormone which play a key role to developing stress resistant crops.

Many plants have evolved to endure harsh environmental conditions, yet the detailed mechanisms of plant stress resistance have long remained unclear. A single plant hormone, abscisic acid (ABA), has been known to play a central regulatory role in such resistance, holding the key to advances in the development of stress-resistant crops.

In results published this month in the Proceedings of the National Academy of Sciences, research teams at RIKEN and the Japan Science and Technology Agency (JST) have for the first time unlocked the secret to ABA-mediated signaling. The teams demonstrated that a protein phosphatase (PP2C) interacts with a protein kinase (SnRK2) to regulate the elusive ABA signal transmission pathway, acting as an ON/OFF switch.

Combining this discovery with the recent finding that PP2C activity is regulated by ABA receptors (RCAR and PYR), the researchers went on to trace the ABA signal pathway itself. In conditions of high environmental stress, they showed that ABA production leads ABA receptors to suppress PP2C, which in turn results in activation of SnRK2, flipping the ABA “switch” and triggering various stress response mechanisms.

Elucidation of the mechanism underlying ABA signaling has wide-ranging implications for plant science. In addition to its role in regulating resistance to drought, salt and cold, ABA contributes to defending against disease and pests, while also functioning at various stages of plant development. Applications are anticipated in the development of stress-resistant crops, in the improvement of seed stability, and in the control of pre-harvest sprouting.

For more information, please contact:

Dr. Taishi Umezawa
Gene Discovery Research Group
RIKEN Plant Science Center
Tel: +81-(0) 29-836-4359 / fax: +81-(0) 29-836-9060
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-467-9443
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>