Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flipping the 'off' switch on cell growth

25.02.2013
Protein uses multiple means to help cells cope when oxygen runs low

A protein known for turning on genes to help cells survive low-oxygen conditions also slows down the copying of new DNA strands, thus shutting down the growth of new cells, Johns Hopkins researchers report. Their discovery has wide-ranging implications, they say, given the importance of this copying — known as DNA replication — and new cell growth to many of the body's functions and in such diseases as cancer.

"We've long known that this protein, HIF-1á, can switch hundreds of genes on or off in response to low oxygen conditions," says Gregg Semenza, M.D., Ph.D., a molecular biologist who led the research team and has long studied the role of low-oxygen conditions in cancer, lung disease and heart disorders. "We've now learned that HIF-1á is even more versatile than we thought, as it can work directly to stop new cells from forming." A report on the discovery appears in the Feb. 12 issue of Science Signaling.

With his team, Semenza, who is the C. Michael Armstrong Professor of Medicine at the Johns Hopkins University School of Medicine's Institute for Cell Engineering and Institute for Genomic Medicine, discovered HIF-1á in the 1990s and has studied it ever since, pinpointing a multitude of genes in different types of cells that have their activity ramped up or down by the activated protein. These changes in so-called "gene expression" help cells survive when oxygen-rich blood flow to an area slows or stops temporarily; they also allow tumors to build new blood vessels to feed themselves.
To learn how HIF-1á's own activity is controlled, the team looked for proteins from human cells that would attach to HIF-1á. They found two, MCM3 and MCM7, that limited HIF-1á's activity, and were also part of the DNA replication machinery. Those results were reported in 2011.

In the new research, Semenza and his colleagues further probed HIF-1á's relationship to DNA replication by comparing cells in low-oxygen conditions to cells kept under normal conditions. They measured the amount of DNA replication complexes in the cells, as well as how active the complexes were. The cells kept in low-oxygen conditions, which had stopped dividing, had just as much of the DNA replication machinery as the normal dividing cells, the researchers found; the difference was that the machinery wasn't working. It turned out that in the nondividing cells, HIF-1á was binding to a protein that loads the DNA replication complex onto DNA strands, and preventing the complex from being activated.
"Our experiments answered the long-standing question of how, exactly, cells stop dividing in response to low oxygen," says Maimon Hubbi, Ph.D., a member of Semenza's team who is now working toward an M.D. degree. "It also shows us that the relationship between HIF-1á and the DNA replication complex is reciprocal — that is, each can shut the other down."

Other authors on the report are Kshitiz, Daniele M. Gilkes, Sergio Rey, Carmen C. Wong, Weibo Luo, Chi V. Dang and Andre Levchenko, all of the Johns Hopkins University School of Medicine, and Deok-Ho Kim of the University of Washington, Seattle.

The study was funded by the U.S. Public Health Service (contracts N01-HV28180 and HHS-N268201000032c), the National Heart, Lung, and Blood Institute (grant number T32-HL007525), the National Institute of General Medical Sciences (grant number T32-GM008752), the American Heart Association (predoctoral fellowship 10PRE4160120), the Susan G. Komen Foundation (postdoctoral fellowship KG111254), the Foundation for Advanced Research in the Medical Sciences and the Johns Hopkins Institute for Cell Engineering.
Link to the paper: http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/ra10

Related stories:

Podcast on the Science Signaling paper: http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/pc5/DC1

Johns Hopkins Researchers Link Cell Division and Oxygen Levels: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_
researchers_link_cell_division_and_oxygen_levels

Gregg Semenza on how doping in endurance sports and treating cardiovascular disease are interrelated: http://www.hopkinsmedicine.org/institute_cell_engineering/experts/meet_
scientists/gregg_semenza.html

Need Oxygen? Cells Know How to Spend and Save: http://www.hopkinsmedicine.org/news/media/releases/need_oxygen_cells_know
_how_to_spend_and_save

Johns Hopkins Researchers Discover How Breast Cancer Spreads to the Lung: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_researchers

_discover_how_breast_cancer_spreads_to_lung

Shawna Williams | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht World’s fastest algorithm for recognising regular DNA sequences
04.05.2015 | Europäische Akademie Bozen - European Academy Bozen/Bolzano

nachricht Proteomics identifies DNA repair toolbox
04.05.2015 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

World’s fastest algorithm for recognising regular DNA sequences

04.05.2015 | Life Sciences

Interzum 2015: WPC furniture with low flammability

04.05.2015 | Trade Fair News

Improved detection of radio waves from space

04.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>