Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flipping the 'off' switch on cell growth

25.02.2013
Protein uses multiple means to help cells cope when oxygen runs low

A protein known for turning on genes to help cells survive low-oxygen conditions also slows down the copying of new DNA strands, thus shutting down the growth of new cells, Johns Hopkins researchers report. Their discovery has wide-ranging implications, they say, given the importance of this copying — known as DNA replication — and new cell growth to many of the body's functions and in such diseases as cancer.

"We've long known that this protein, HIF-1á, can switch hundreds of genes on or off in response to low oxygen conditions," says Gregg Semenza, M.D., Ph.D., a molecular biologist who led the research team and has long studied the role of low-oxygen conditions in cancer, lung disease and heart disorders. "We've now learned that HIF-1á is even more versatile than we thought, as it can work directly to stop new cells from forming." A report on the discovery appears in the Feb. 12 issue of Science Signaling.

With his team, Semenza, who is the C. Michael Armstrong Professor of Medicine at the Johns Hopkins University School of Medicine's Institute for Cell Engineering and Institute for Genomic Medicine, discovered HIF-1á in the 1990s and has studied it ever since, pinpointing a multitude of genes in different types of cells that have their activity ramped up or down by the activated protein. These changes in so-called "gene expression" help cells survive when oxygen-rich blood flow to an area slows or stops temporarily; they also allow tumors to build new blood vessels to feed themselves.
To learn how HIF-1á's own activity is controlled, the team looked for proteins from human cells that would attach to HIF-1á. They found two, MCM3 and MCM7, that limited HIF-1á's activity, and were also part of the DNA replication machinery. Those results were reported in 2011.

In the new research, Semenza and his colleagues further probed HIF-1á's relationship to DNA replication by comparing cells in low-oxygen conditions to cells kept under normal conditions. They measured the amount of DNA replication complexes in the cells, as well as how active the complexes were. The cells kept in low-oxygen conditions, which had stopped dividing, had just as much of the DNA replication machinery as the normal dividing cells, the researchers found; the difference was that the machinery wasn't working. It turned out that in the nondividing cells, HIF-1á was binding to a protein that loads the DNA replication complex onto DNA strands, and preventing the complex from being activated.
"Our experiments answered the long-standing question of how, exactly, cells stop dividing in response to low oxygen," says Maimon Hubbi, Ph.D., a member of Semenza's team who is now working toward an M.D. degree. "It also shows us that the relationship between HIF-1á and the DNA replication complex is reciprocal — that is, each can shut the other down."

Other authors on the report are Kshitiz, Daniele M. Gilkes, Sergio Rey, Carmen C. Wong, Weibo Luo, Chi V. Dang and Andre Levchenko, all of the Johns Hopkins University School of Medicine, and Deok-Ho Kim of the University of Washington, Seattle.

The study was funded by the U.S. Public Health Service (contracts N01-HV28180 and HHS-N268201000032c), the National Heart, Lung, and Blood Institute (grant number T32-HL007525), the National Institute of General Medical Sciences (grant number T32-GM008752), the American Heart Association (predoctoral fellowship 10PRE4160120), the Susan G. Komen Foundation (postdoctoral fellowship KG111254), the Foundation for Advanced Research in the Medical Sciences and the Johns Hopkins Institute for Cell Engineering.
Link to the paper: http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/ra10

Related stories:

Podcast on the Science Signaling paper: http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/pc5/DC1

Johns Hopkins Researchers Link Cell Division and Oxygen Levels: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_
researchers_link_cell_division_and_oxygen_levels

Gregg Semenza on how doping in endurance sports and treating cardiovascular disease are interrelated: http://www.hopkinsmedicine.org/institute_cell_engineering/experts/meet_
scientists/gregg_semenza.html

Need Oxygen? Cells Know How to Spend and Save: http://www.hopkinsmedicine.org/news/media/releases/need_oxygen_cells_know
_how_to_spend_and_save

Johns Hopkins Researchers Discover How Breast Cancer Spreads to the Lung: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_researchers

_discover_how_breast_cancer_spreads_to_lung

Shawna Williams | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht A Fluttering Accordion
04.08.2015 | Friedrich-Schiller-Universität Jena

nachricht Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested
03.08.2015 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greenhouse gases' millennia-long ocean legacy

Continuing current carbon dioxide (CO2) emission trends throughout this century and beyond would leave a legacy of heat and acidity in the deep ocean. These...

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Success 4.0 – Is Your Company Fit for the Future? New Series of Events for Executives

04.08.2015 | Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

 
Latest News

Small tilt in magnets makes them viable memory chips

04.08.2015 | Information Technology

New Design Brings World’s First Solar Battery to Performance Milestone

04.08.2015 | Power and Electrical Engineering

Magnetism at Nanoscale

04.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>