Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flipping the 'off' switch on cell growth

25.02.2013
Protein uses multiple means to help cells cope when oxygen runs low

A protein known for turning on genes to help cells survive low-oxygen conditions also slows down the copying of new DNA strands, thus shutting down the growth of new cells, Johns Hopkins researchers report. Their discovery has wide-ranging implications, they say, given the importance of this copying — known as DNA replication — and new cell growth to many of the body's functions and in such diseases as cancer.

"We've long known that this protein, HIF-1á, can switch hundreds of genes on or off in response to low oxygen conditions," says Gregg Semenza, M.D., Ph.D., a molecular biologist who led the research team and has long studied the role of low-oxygen conditions in cancer, lung disease and heart disorders. "We've now learned that HIF-1á is even more versatile than we thought, as it can work directly to stop new cells from forming." A report on the discovery appears in the Feb. 12 issue of Science Signaling.

With his team, Semenza, who is the C. Michael Armstrong Professor of Medicine at the Johns Hopkins University School of Medicine's Institute for Cell Engineering and Institute for Genomic Medicine, discovered HIF-1á in the 1990s and has studied it ever since, pinpointing a multitude of genes in different types of cells that have their activity ramped up or down by the activated protein. These changes in so-called "gene expression" help cells survive when oxygen-rich blood flow to an area slows or stops temporarily; they also allow tumors to build new blood vessels to feed themselves.
To learn how HIF-1á's own activity is controlled, the team looked for proteins from human cells that would attach to HIF-1á. They found two, MCM3 and MCM7, that limited HIF-1á's activity, and were also part of the DNA replication machinery. Those results were reported in 2011.

In the new research, Semenza and his colleagues further probed HIF-1á's relationship to DNA replication by comparing cells in low-oxygen conditions to cells kept under normal conditions. They measured the amount of DNA replication complexes in the cells, as well as how active the complexes were. The cells kept in low-oxygen conditions, which had stopped dividing, had just as much of the DNA replication machinery as the normal dividing cells, the researchers found; the difference was that the machinery wasn't working. It turned out that in the nondividing cells, HIF-1á was binding to a protein that loads the DNA replication complex onto DNA strands, and preventing the complex from being activated.
"Our experiments answered the long-standing question of how, exactly, cells stop dividing in response to low oxygen," says Maimon Hubbi, Ph.D., a member of Semenza's team who is now working toward an M.D. degree. "It also shows us that the relationship between HIF-1á and the DNA replication complex is reciprocal — that is, each can shut the other down."

Other authors on the report are Kshitiz, Daniele M. Gilkes, Sergio Rey, Carmen C. Wong, Weibo Luo, Chi V. Dang and Andre Levchenko, all of the Johns Hopkins University School of Medicine, and Deok-Ho Kim of the University of Washington, Seattle.

The study was funded by the U.S. Public Health Service (contracts N01-HV28180 and HHS-N268201000032c), the National Heart, Lung, and Blood Institute (grant number T32-HL007525), the National Institute of General Medical Sciences (grant number T32-GM008752), the American Heart Association (predoctoral fellowship 10PRE4160120), the Susan G. Komen Foundation (postdoctoral fellowship KG111254), the Foundation for Advanced Research in the Medical Sciences and the Johns Hopkins Institute for Cell Engineering.
Link to the paper: http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/ra10

Related stories:

Podcast on the Science Signaling paper: http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/pc5/DC1

Johns Hopkins Researchers Link Cell Division and Oxygen Levels: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_
researchers_link_cell_division_and_oxygen_levels

Gregg Semenza on how doping in endurance sports and treating cardiovascular disease are interrelated: http://www.hopkinsmedicine.org/institute_cell_engineering/experts/meet_
scientists/gregg_semenza.html

Need Oxygen? Cells Know How to Spend and Save: http://www.hopkinsmedicine.org/news/media/releases/need_oxygen_cells_know
_how_to_spend_and_save

Johns Hopkins Researchers Discover How Breast Cancer Spreads to the Lung: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_researchers

_discover_how_breast_cancer_spreads_to_lung

Shawna Williams | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

nachricht How Neural Circuits Implement Natural Vision
24.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

Engineers take first step toward flexible, wearable, tricorder-like device

24.05.2016 | Information Technology

Rice study decodes genetic circuitry for bacterial spore formation

24.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>