Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flipping the 'off' switch on cell growth

25.02.2013
Protein uses multiple means to help cells cope when oxygen runs low

A protein known for turning on genes to help cells survive low-oxygen conditions also slows down the copying of new DNA strands, thus shutting down the growth of new cells, Johns Hopkins researchers report. Their discovery has wide-ranging implications, they say, given the importance of this copying — known as DNA replication — and new cell growth to many of the body's functions and in such diseases as cancer.

"We've long known that this protein, HIF-1á, can switch hundreds of genes on or off in response to low oxygen conditions," says Gregg Semenza, M.D., Ph.D., a molecular biologist who led the research team and has long studied the role of low-oxygen conditions in cancer, lung disease and heart disorders. "We've now learned that HIF-1á is even more versatile than we thought, as it can work directly to stop new cells from forming." A report on the discovery appears in the Feb. 12 issue of Science Signaling.

With his team, Semenza, who is the C. Michael Armstrong Professor of Medicine at the Johns Hopkins University School of Medicine's Institute for Cell Engineering and Institute for Genomic Medicine, discovered HIF-1á in the 1990s and has studied it ever since, pinpointing a multitude of genes in different types of cells that have their activity ramped up or down by the activated protein. These changes in so-called "gene expression" help cells survive when oxygen-rich blood flow to an area slows or stops temporarily; they also allow tumors to build new blood vessels to feed themselves.
To learn how HIF-1á's own activity is controlled, the team looked for proteins from human cells that would attach to HIF-1á. They found two, MCM3 and MCM7, that limited HIF-1á's activity, and were also part of the DNA replication machinery. Those results were reported in 2011.

In the new research, Semenza and his colleagues further probed HIF-1á's relationship to DNA replication by comparing cells in low-oxygen conditions to cells kept under normal conditions. They measured the amount of DNA replication complexes in the cells, as well as how active the complexes were. The cells kept in low-oxygen conditions, which had stopped dividing, had just as much of the DNA replication machinery as the normal dividing cells, the researchers found; the difference was that the machinery wasn't working. It turned out that in the nondividing cells, HIF-1á was binding to a protein that loads the DNA replication complex onto DNA strands, and preventing the complex from being activated.
"Our experiments answered the long-standing question of how, exactly, cells stop dividing in response to low oxygen," says Maimon Hubbi, Ph.D., a member of Semenza's team who is now working toward an M.D. degree. "It also shows us that the relationship between HIF-1á and the DNA replication complex is reciprocal — that is, each can shut the other down."

Other authors on the report are Kshitiz, Daniele M. Gilkes, Sergio Rey, Carmen C. Wong, Weibo Luo, Chi V. Dang and Andre Levchenko, all of the Johns Hopkins University School of Medicine, and Deok-Ho Kim of the University of Washington, Seattle.

The study was funded by the U.S. Public Health Service (contracts N01-HV28180 and HHS-N268201000032c), the National Heart, Lung, and Blood Institute (grant number T32-HL007525), the National Institute of General Medical Sciences (grant number T32-GM008752), the American Heart Association (predoctoral fellowship 10PRE4160120), the Susan G. Komen Foundation (postdoctoral fellowship KG111254), the Foundation for Advanced Research in the Medical Sciences and the Johns Hopkins Institute for Cell Engineering.
Link to the paper: http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/ra10

Related stories:

Podcast on the Science Signaling paper: http://stke.sciencemag.org/cgi/content/full/sigtrans;6/262/pc5/DC1

Johns Hopkins Researchers Link Cell Division and Oxygen Levels: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_
researchers_link_cell_division_and_oxygen_levels

Gregg Semenza on how doping in endurance sports and treating cardiovascular disease are interrelated: http://www.hopkinsmedicine.org/institute_cell_engineering/experts/meet_
scientists/gregg_semenza.html

Need Oxygen? Cells Know How to Spend and Save: http://www.hopkinsmedicine.org/news/media/releases/need_oxygen_cells_know
_how_to_spend_and_save

Johns Hopkins Researchers Discover How Breast Cancer Spreads to the Lung: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_researchers

_discover_how_breast_cancer_spreads_to_lung

Shawna Williams | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>