Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies May Reveal Evolutionary Step to Live Birth

26.11.2008
A species of fruit fly from the Seychelles Islands often lays larvae instead of eggs, UC San Diego biologists have discovered. Clues to how animals switch from laying eggs to live birth may be found in the well-studied species’ ecology and genes.

The fly is one of a dozen species of Drosophila to have recently had their genomes sequenced, information that should provide abundant opportunities for identifying genetic changes that cause females of this species, and not others, to retain their fertilized eggs until they are ready to hatch.

The result was so surprising that the scientists initially thought it was a mistake.

“The student who was timing things came a said ‘wow, these eggs in this species really develop quickly’ sometimes in less than an hour. That’s not possible,” said Therese Markow, a professor of biology who led the project. “When I went and actually looked at them I saw that they were depositing something that was very advanced, that hatched into a larva right away. In several cases they were hatching as they were being laid.”

Even those Seychelles fly eggs that emerged unhatched were at an advanced state of development, the team reports in forthcoming issue of the Journal of Evolutionary Biology. Most larvae emerged within two hours compared to an average of nearly 23 hours for the other 10 species in the study.

The Seychelles flies also laid larger eggs--nearly double the average volumes found for the other species--and their ovaries have fewer threadlike structures called ovarioles in which insect eggs mature before fertilization.

Live birth could result from changes to the male reproductive strategy as well. Proteins found in the semen of the well-known lab fruit fly, Drosophila melanogaster, stimulate egg laying in the female. A modification of these signals could be responsible for the switch.

“That signaling mechanism between the male and the female has changed. We don’t know the basis for it, but we ought to be looking,” Markow said. “It’s very interesting. It tells you who’s really going to be able control reproduction.”

Early hatching offers advantages, the authors say. Mobile larvae can burrow into the ground to avoid becoming inadvertent hosts to the eggs of parasitic insects or a predator’s meal. But harboring offspring for a longer period of time costs the female.

The opportunity to take that risk may come with specialization. The Seychelles flies feed only on the fruit of the morinda tree, a tropical plant that produces year round, but is toxic to other fruit flies, giving this single species exclusive access.

One other fly in the study, Drosophila yakuba, also occasionally laid larvae instead of eggs, and their eggs also hatched fairly quickly, most in under 14 hours. It too specializes in a particular fruit, that of the Pandanus tree.

The Seychelles flies, Drosophila sechellia and D. yakuba are two of about 250 species held by the Drosophila Species Stock Center, which moved to UC San Diego this fall.

Contact: Therese Markow (tmarkow@ucsd.edu)

Susan Brown | Newswise Science News
Further information:
http://www.ucsd.edu

Further reports about: Drosophila Evolutionary Seychelles birth flies fruit fly genes larva larvae species species’ ecology

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>