Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies offer insight into human metabolic disease

01.06.2010
Commonalities between flies and humans make a valuable new model for galactosemia
Galactosemia is a metabolic disease resulting from an inherited defect that prevents the proper metabolism of galactose, a sugar commonly found in dairy products, like milk. Exposure of affected people to galactose, can damage most of their organ systems and can be fatal. The ability to study the disease is limited by a lack of animal models. New information suggests that similarities between humans and flies may provide scientists with useful clues.

The inability to breakdown simple sugars in common foods, such as milk, can lead to the accumulation of sugars in the blood, which become toxic and damaging to a variety of organ systems. People with galactosemia, either classic galactosemia or epimerase deficiency galactosemia, have genetic mutations that decrease their levels of the key enzymes (GALT and GALE) responsible for the metabolism of a common form of dietary sugar. Without proper levels of these proteins, these people are unable to process the sugar, galactose, which makes up about half of the calories in milk. Both disorders can have severe effects. Patients suffer from liver and brain damage, cataracts, and kidney failure. The disease can be fatal. There is currently no cure and prognosis and treatment remain ill-defined, partly due to the lack of a good animal model that scientists can use to study the disease and to develop potential treatments.

Discovery of treatments for galactosemia is complicated by the unique sensitivities among different organisms to defects in sugar metabolism. For example, galactose accumulation in mice does not have the same physiological consequences as it does in humans, limiting the applicability of mouse models and slowing advances in this area of research. The fly (Drosophila melanogaster) is a popular laboratory model organism that has been used for many decades and in numerous studies, including those of human metabolic disease.

Scientists at Emory University developed flies that carry genetic changes similar to those found in patients with galactosemia. Like patients with classic galactosemia, flies that are missing GALT survive if they are raised on food that does not contain galactose, but die in development if exposed to high levels of galactose. Flies with impaired GALE function also succumb in greater numbers when exposed to galactose during development, similar to patients with defects in the same area of their metabolic pathway. The Emory scientists also tested the relationship between the timing of galactose exposure with the fly's outcome, and designed and characterized flies in which they could remove or control the production of GALT or GALE at variable points in the animal's development to determine when and where the sugar breakdown was most needed. These models can help researchers understand how changes in sugar metabolism lead to disease and open the door to novel drug discovery by serving as a testing ground for candidate therapeutics.

This work is presented in corresponding Research Articles in Volume 3 issue 7/8 of the research journal, Disease Models & Mechanisms (DMM), , published by The Company of Biologists, a non-profit organisation based in Cambridge, UK. The first article entitled 'A Drosophila melanogaster model of classic galactosemia, was written Rebekah Kushner, Emily Ryan, Jennifer Sefton, Rebecca Sanders, Patricia Jumbo Lucioni, Kenneth Moberg, and Judith Fridovich-Keil. The second article entitled 'UDP-galactose 4' epimerase (GALE) is essential for development of Drosophila melanogaster' was written by Rebecca Sanders, Jennifer Sefton, Kenneth Moberg, and Judith Fridovich-Keil

About Disease Models & Mechanisms:

Disease Models & Mechanisms (DMM) (http://dmm.biologists.org) is a new research journal, launched in 2008, that publishes primary scientific research, as well as review articles, editorials, and research highlights. The journal's mission is to provide a forum for clinicians and scientists to discuss basic science and clinical research related to human disease, disease detection and novel therapies. DMM is published by the Company of Biologists, a non-profit organization based in Cambridge, UK.

The Company also publishes the international biology research journals Development, Journal of Cell Science, and The Journal of Experimental Biology. In addition to financing these journals, the Company provides grants to scientific societies and supports other activities including travelling fellowships for junior scientists, workshops and conferences. The world's poorest nations receive free and unrestricted access to the Company's journals.

Kristy Kain | EurekAlert!
Further information:
http://dmm.biologists.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>