Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of flies and men

20.07.2012
What 10 000 fruit flies have to tell us about differences between the sexes

What do you get when you dissect 10 000 fruit-fly larvae? A team of researchers led by the EMBL- European Bioinformatics Institute (EMBL-EBI) in the UK and the Max Planck Institute of Immunobiology and Epigenetics (MPI) in Freiburg, Germany has discovered a way in which cells can adjust the activity of many different genes at once. Their findings, published online today in Science, overturn commonly held views and reveal an important mechanism behind gender differences.


The female (left) fruit fly, Drosophila melanogaster, is larger than the male (right).
Image credit: EMBL

Asifa Akhtar’s laboratory, previously at EMBL now at MPI, studies precisely how flies regulate an important set of genes. Females have two X chromosomes while males have only one, so the genes on the female X chromosomes somehow need to be kept from producing twice as many proteins as those on the male X chromosome. Male fruit flies get around this by making their X chromosome’s genes work double time: an epigenetic enzyme doubles the output of thousands of different genes. But just how much that doubled output is can vary tremendously from one gene to the next.

“Imagine that you have thousands of half-filled glasses of all different sizes and shapes,” explains Nick Luscombe, who led the work at EMBL-EBI. “Now imagine that you have to fill them all up to the top at the same time. This is an incredibly complex mechanism.”

To see how genes are expressed, scientists try to pinpoint signals that show when a gene increases its output. In most studies of this kind, this output is increased by a factor of between 10 and 100 when a gene is being expressed. In this study, the signal involved is miniscule: an increase of only a factor of two.

Observing such a faint signal is a major challenge. But thanks to the painstaking fly-larvae dissection efforts of graduate student Thomas Conrad, combined with the detailed analytical efforts of Florence Cavalli and Juanma Vaquerizas, the team gathered enough material to measure this output and compare males and females directly.

The scientists found twice as many DNA-transcribing (reading) proteins – known as polymerases – attached to the male X chromosome as to the female version. This means that the difference between males and females is rooted in the beginning of the transcription process, when the polymerase first binds to the DNA. This goes against the commonly held view that the regulation mechanism is kicked off during transcription.

“A factor of two appears minuscule, so it is not easy to measure accurately,” says Akhtar. “We were really doing a bulk analysis of several hundred genes, and that required a lot of careful bioinformatics analysis. Our group would run experiments, Nick’s would analyse the data, and then we would decide on new experiments together to be sure that what we were seeing was real.”

Discovering the machinery that doubles the expression of male X-chromosome genes could well have implications that go far beyond the humble fly. Speaking more technically, Luscombe says: “This is the first direct, clear mechanism that links a histone modification and the activity of a polymerase across thousands of genes”.

Looking into future directions, Akhtar says: “We now need to look more deeply into what makes this kind of mass regulation possible, and how it fits in with other means cells may have to fine-tune their use of genetic information.”

Published online in Science on 19 July 2012. DOI: 10.1126/science.1221428.

Policy regarding use
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Contacts:
contactpress@ebi.ac.uk
Mary Todd Bergman
Senior Communications Officer
EMBL-European Bioinformatics Institute
Tel: +44 (0)1223 494 665
mary@ebi.ac.uk
www.ebi.ac.uk/information/news
Twitter: @emblebi
Facebook: /EMBLEBI
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org
http://www.embl.de/aboutus/communication_outreach/media_relations/2012/120719_Hinxton/

Further reports about: Bioinformatics EMBL-EBI MPI Max Planck Institute X chromosome different genes

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>