Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies can tell us about the Origin of Language

26.06.2014

Scientists have discovered a crucial component of the origin of language – in fruit flies. A team at Universität Regensburg in collaboration with researchers from Berlin, Jena and Columbia, Missouri in the US studied the fruit fly version of a gene involved in human language, FOXP2, and found that it is necessary for learning movements in flies as well.

“Speaking any language requires proper articulation of the different sounds,” says Björn Brembs, Professor of Neurogenetics at Universität Regensburg, who coordinated the collaboration.


Photograph of Drosophila

“To accomplish this feat, muscles in the lips, tongue and larynx need to work perfectly together. As toddlers, we acquire these skills by babbling until what we utter matches what we want to say,” adds Constance Scharff who has shown the relevance of FoxP for song learning in birds at the Freie Universität Berlin.

“Young songbirds try out different variants of sounds similarly to how infants babble”. Brembs and Scharff’s groups teamed up to study the role of FoxP in flies.

The researchers studied flies with genetically engineered FoxP in a learning experiment that comes as close to vocal learning as possible in a non-vocal animal. Similarly to infants and birds, the flies had to try out different movements with their flight muscles to learn where to fly and where not to fly.

Using a heat beam, the experimenters trained the flies to avoid flying towards one direction, forcing the fly to try different steering maneuvers. Flies with compromised FoxP genes failed in this task, while control flies did well. Importantly, the FoxP manipulated flies had no problem learning to avoid a particular direction when this was coupled to a color. The specificity of this deficit is also typical for patients with FOXP2 mutations.

“Also in line with the known function of FoxP in humans and birds is the observation that the morphology of certain sub-regions of the mutant flies’ brains is altered. This indicates that FoxP might regulate the expression of other genes during brain development,” says Jürgen Rybak from the Max Planck Institute for Chemical Ecology in Jena, who performed the morphological measurements of the fly brains.

These discoveries suggest that one of the roots of language can be placed 500 million years ago at the split between vertebrates and invertebrates, to an ancestor which had evolved the ability to learn by trial and error. From this, Troy Zars of the University of Missouri, Columbia concludes, “The identification of this phenotype in FoxP mutant flies provides a starting point in understanding the genes involved in trial-and-error-based learning and communication across species, and should help in understanding how genetic bases of communication deficits arise in humans." Zars had discovered the FoxP gene in the fly genome in 2007.

“Presumably, the ability to learn from trial and error was harnessed when vocal learning in vertebrates and language acquisition in humans evolved,” Brembs surmises. The conservation of these functions opens the window for basic research into the genetic mechanisms underlying complex traits such as language or schizophrenia in animals that do not exhibit these traits – especially in genetically very accessible invertebrates such as Drosophila.

Further information:
http://brembs.net

Press Contact
Prof. Dr. Björn Brembs
Universität Regensburg
Institute for Zoology
Tel.: 0049 (0)941 943-3117
Bjoern.Brembs@ur.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

Further reports about: ability flies fly genes genetically humans infants muscles sounds traits vertebrates vocal

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>