Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies can tell us about the Origin of Language

26.06.2014

Scientists have discovered a crucial component of the origin of language – in fruit flies. A team at Universität Regensburg in collaboration with researchers from Berlin, Jena and Columbia, Missouri in the US studied the fruit fly version of a gene involved in human language, FOXP2, and found that it is necessary for learning movements in flies as well.

“Speaking any language requires proper articulation of the different sounds,” says Björn Brembs, Professor of Neurogenetics at Universität Regensburg, who coordinated the collaboration.


Photograph of Drosophila

“To accomplish this feat, muscles in the lips, tongue and larynx need to work perfectly together. As toddlers, we acquire these skills by babbling until what we utter matches what we want to say,” adds Constance Scharff who has shown the relevance of FoxP for song learning in birds at the Freie Universität Berlin.

“Young songbirds try out different variants of sounds similarly to how infants babble”. Brembs and Scharff’s groups teamed up to study the role of FoxP in flies.

The researchers studied flies with genetically engineered FoxP in a learning experiment that comes as close to vocal learning as possible in a non-vocal animal. Similarly to infants and birds, the flies had to try out different movements with their flight muscles to learn where to fly and where not to fly.

Using a heat beam, the experimenters trained the flies to avoid flying towards one direction, forcing the fly to try different steering maneuvers. Flies with compromised FoxP genes failed in this task, while control flies did well. Importantly, the FoxP manipulated flies had no problem learning to avoid a particular direction when this was coupled to a color. The specificity of this deficit is also typical for patients with FOXP2 mutations.

“Also in line with the known function of FoxP in humans and birds is the observation that the morphology of certain sub-regions of the mutant flies’ brains is altered. This indicates that FoxP might regulate the expression of other genes during brain development,” says Jürgen Rybak from the Max Planck Institute for Chemical Ecology in Jena, who performed the morphological measurements of the fly brains.

These discoveries suggest that one of the roots of language can be placed 500 million years ago at the split between vertebrates and invertebrates, to an ancestor which had evolved the ability to learn by trial and error. From this, Troy Zars of the University of Missouri, Columbia concludes, “The identification of this phenotype in FoxP mutant flies provides a starting point in understanding the genes involved in trial-and-error-based learning and communication across species, and should help in understanding how genetic bases of communication deficits arise in humans." Zars had discovered the FoxP gene in the fly genome in 2007.

“Presumably, the ability to learn from trial and error was harnessed when vocal learning in vertebrates and language acquisition in humans evolved,” Brembs surmises. The conservation of these functions opens the window for basic research into the genetic mechanisms underlying complex traits such as language or schizophrenia in animals that do not exhibit these traits – especially in genetically very accessible invertebrates such as Drosophila.

Further information:
http://brembs.net

Press Contact
Prof. Dr. Björn Brembs
Universität Regensburg
Institute for Zoology
Tel.: 0049 (0)941 943-3117
Bjoern.Brembs@ur.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

Further reports about: ability flies fly genes genetically humans infants muscles sounds traits vertebrates vocal

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>