Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies can tell us about the Origin of Language

26.06.2014

Scientists have discovered a crucial component of the origin of language – in fruit flies. A team at Universität Regensburg in collaboration with researchers from Berlin, Jena and Columbia, Missouri in the US studied the fruit fly version of a gene involved in human language, FOXP2, and found that it is necessary for learning movements in flies as well.

“Speaking any language requires proper articulation of the different sounds,” says Björn Brembs, Professor of Neurogenetics at Universität Regensburg, who coordinated the collaboration.


Photograph of Drosophila

“To accomplish this feat, muscles in the lips, tongue and larynx need to work perfectly together. As toddlers, we acquire these skills by babbling until what we utter matches what we want to say,” adds Constance Scharff who has shown the relevance of FoxP for song learning in birds at the Freie Universität Berlin.

“Young songbirds try out different variants of sounds similarly to how infants babble”. Brembs and Scharff’s groups teamed up to study the role of FoxP in flies.

The researchers studied flies with genetically engineered FoxP in a learning experiment that comes as close to vocal learning as possible in a non-vocal animal. Similarly to infants and birds, the flies had to try out different movements with their flight muscles to learn where to fly and where not to fly.

Using a heat beam, the experimenters trained the flies to avoid flying towards one direction, forcing the fly to try different steering maneuvers. Flies with compromised FoxP genes failed in this task, while control flies did well. Importantly, the FoxP manipulated flies had no problem learning to avoid a particular direction when this was coupled to a color. The specificity of this deficit is also typical for patients with FOXP2 mutations.

“Also in line with the known function of FoxP in humans and birds is the observation that the morphology of certain sub-regions of the mutant flies’ brains is altered. This indicates that FoxP might regulate the expression of other genes during brain development,” says Jürgen Rybak from the Max Planck Institute for Chemical Ecology in Jena, who performed the morphological measurements of the fly brains.

These discoveries suggest that one of the roots of language can be placed 500 million years ago at the split between vertebrates and invertebrates, to an ancestor which had evolved the ability to learn by trial and error. From this, Troy Zars of the University of Missouri, Columbia concludes, “The identification of this phenotype in FoxP mutant flies provides a starting point in understanding the genes involved in trial-and-error-based learning and communication across species, and should help in understanding how genetic bases of communication deficits arise in humans." Zars had discovered the FoxP gene in the fly genome in 2007.

“Presumably, the ability to learn from trial and error was harnessed when vocal learning in vertebrates and language acquisition in humans evolved,” Brembs surmises. The conservation of these functions opens the window for basic research into the genetic mechanisms underlying complex traits such as language or schizophrenia in animals that do not exhibit these traits – especially in genetically very accessible invertebrates such as Drosophila.

Further information:
http://brembs.net

Press Contact
Prof. Dr. Björn Brembs
Universität Regensburg
Institute for Zoology
Tel.: 0049 (0)941 943-3117
Bjoern.Brembs@ur.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

Further reports about: ability flies fly genes genetically humans infants muscles sounds traits vertebrates vocal

More articles from Life Sciences:

nachricht Stick insects produce bacterial enzymes themselves
31.05.2016 | Max-Planck-Institut für chemische Ökologie

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>