Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexibility: the key to carbon capture

15.08.2011
Materials made from porous coordination polymers with flexing structures make better traps for harmful gases

From power plants that capture their own carbon dioxide emissions to vehicles powered by hydrogen, clean energy applications often demand materials that can selectively adsorb large volumes of harmful gases.

Materials known as porous coordination polymers (PCPs) have great gas-trapping potential, and now their adsorptive properties can be boosted using a new technique developed by a research team in Japan.

The key to the development is making PCPs that can flex, since it allows the team to tune the gas-adsorbing properties of these materials—whether it is to improve the ability to selectively adsorb one gas from a mixture or to fine-tune the pressure at which the gas is captured and released.

While structural flexibility in PCPs is not new, team member Ryotaro Matsuda from the RIKEN SPring-8 Center, Harima, explains that he and his colleagues successfully incorporated this flexibility into a PCP built from molecular components known as secondary building units (SBUs). At the molecular scale, PCPs consist of vast networks of tiny interlinked cages, inside which gas molecules can sit. SBUs are made from clusters of metal atoms that can be used to form the corner of each cage. Their use gives materials scientists great control over the structure of a cage, but they can also lock the structure.

Matsuda and colleagues overcame the rigidity problem by connecting the cage corners into cubes using long, slim carbon-based linkers. In the absence of carbon dioxide, these slender linkers allow the cage framework to collapse into a non-porous solid; but in the presence of a gas, the material expands—a behavior known as gate-opening adsorption (Fig. 1).

It is a behavior that could prove useful, Matsuda explains. “Gate-opening-type adsorption, which is induced by the structural transformations from a non-porous structure to a porous structure at a certain pressure of gas, would provide a way to enhance the efficiency of pressure swing adsorption,” he says. Pressure-swing adsorption is being investigated as a way to capture carbon dioxide emissions from power plants. The concept relies on finding materials that will release the gas in response to a drop in pressure, so that it can be piped away for long-term, underground storage.

The researchers are now looking to improve the performance of their material. “We are currently trying to tune the soft porosity of the prototype PCP to separate mixtures of gases,” says Matsuda. “We have also been working to reveal the relationship between the structure, adsorption property and separation ability of [other] PCPs.”

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center

Reference
Seo, J., Bonneau, C., Matsuda, R., Takata, M. & Kitagawa, S. Soft secondary building unit: dynamic bond rearrangement on multinuclear core of porous coordination polymers in gas media. Journal of the American Chemical Society 133, 9005–9013 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>