Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexibility: the key to carbon capture

15.08.2011
Materials made from porous coordination polymers with flexing structures make better traps for harmful gases

From power plants that capture their own carbon dioxide emissions to vehicles powered by hydrogen, clean energy applications often demand materials that can selectively adsorb large volumes of harmful gases.

Materials known as porous coordination polymers (PCPs) have great gas-trapping potential, and now their adsorptive properties can be boosted using a new technique developed by a research team in Japan.

The key to the development is making PCPs that can flex, since it allows the team to tune the gas-adsorbing properties of these materials—whether it is to improve the ability to selectively adsorb one gas from a mixture or to fine-tune the pressure at which the gas is captured and released.

While structural flexibility in PCPs is not new, team member Ryotaro Matsuda from the RIKEN SPring-8 Center, Harima, explains that he and his colleagues successfully incorporated this flexibility into a PCP built from molecular components known as secondary building units (SBUs). At the molecular scale, PCPs consist of vast networks of tiny interlinked cages, inside which gas molecules can sit. SBUs are made from clusters of metal atoms that can be used to form the corner of each cage. Their use gives materials scientists great control over the structure of a cage, but they can also lock the structure.

Matsuda and colleagues overcame the rigidity problem by connecting the cage corners into cubes using long, slim carbon-based linkers. In the absence of carbon dioxide, these slender linkers allow the cage framework to collapse into a non-porous solid; but in the presence of a gas, the material expands—a behavior known as gate-opening adsorption (Fig. 1).

It is a behavior that could prove useful, Matsuda explains. “Gate-opening-type adsorption, which is induced by the structural transformations from a non-porous structure to a porous structure at a certain pressure of gas, would provide a way to enhance the efficiency of pressure swing adsorption,” he says. Pressure-swing adsorption is being investigated as a way to capture carbon dioxide emissions from power plants. The concept relies on finding materials that will release the gas in response to a drop in pressure, so that it can be piped away for long-term, underground storage.

The researchers are now looking to improve the performance of their material. “We are currently trying to tune the soft porosity of the prototype PCP to separate mixtures of gases,” says Matsuda. “We have also been working to reveal the relationship between the structure, adsorption property and separation ability of [other] PCPs.”

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center

Reference
Seo, J., Bonneau, C., Matsuda, R., Takata, M. & Kitagawa, S. Soft secondary building unit: dynamic bond rearrangement on multinuclear core of porous coordination polymers in gas media. Journal of the American Chemical Society 133, 9005–9013 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>