Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexibility: the key to carbon capture

15.08.2011
Materials made from porous coordination polymers with flexing structures make better traps for harmful gases

From power plants that capture their own carbon dioxide emissions to vehicles powered by hydrogen, clean energy applications often demand materials that can selectively adsorb large volumes of harmful gases.

Materials known as porous coordination polymers (PCPs) have great gas-trapping potential, and now their adsorptive properties can be boosted using a new technique developed by a research team in Japan.

The key to the development is making PCPs that can flex, since it allows the team to tune the gas-adsorbing properties of these materials—whether it is to improve the ability to selectively adsorb one gas from a mixture or to fine-tune the pressure at which the gas is captured and released.

While structural flexibility in PCPs is not new, team member Ryotaro Matsuda from the RIKEN SPring-8 Center, Harima, explains that he and his colleagues successfully incorporated this flexibility into a PCP built from molecular components known as secondary building units (SBUs). At the molecular scale, PCPs consist of vast networks of tiny interlinked cages, inside which gas molecules can sit. SBUs are made from clusters of metal atoms that can be used to form the corner of each cage. Their use gives materials scientists great control over the structure of a cage, but they can also lock the structure.

Matsuda and colleagues overcame the rigidity problem by connecting the cage corners into cubes using long, slim carbon-based linkers. In the absence of carbon dioxide, these slender linkers allow the cage framework to collapse into a non-porous solid; but in the presence of a gas, the material expands—a behavior known as gate-opening adsorption (Fig. 1).

It is a behavior that could prove useful, Matsuda explains. “Gate-opening-type adsorption, which is induced by the structural transformations from a non-porous structure to a porous structure at a certain pressure of gas, would provide a way to enhance the efficiency of pressure swing adsorption,” he says. Pressure-swing adsorption is being investigated as a way to capture carbon dioxide emissions from power plants. The concept relies on finding materials that will release the gas in response to a drop in pressure, so that it can be piped away for long-term, underground storage.

The researchers are now looking to improve the performance of their material. “We are currently trying to tune the soft porosity of the prototype PCP to separate mixtures of gases,” says Matsuda. “We have also been working to reveal the relationship between the structure, adsorption property and separation ability of [other] PCPs.”

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center

Reference
Seo, J., Bonneau, C., Matsuda, R., Takata, M. & Kitagawa, S. Soft secondary building unit: dynamic bond rearrangement on multinuclear core of porous coordination polymers in gas media. Journal of the American Chemical Society 133, 9005–9013 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>