Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flatworm Flouts Fundamental Rule of Biology

06.01.2012
Discovery at UCSF and Stowers Institute Shows Worm Regenerates Without Centrosome, a Structure Long Thought Necessary for Cell Division

A tiny, freshwater flatworm found in ponds and rivers around the world that has long intrigued scientists for its remarkable ability to regenerate has now added a new wrinkle to biology.


The freshwater flatworm Schmidtea mediterranea lives in southern Europe and Northern Africa is the first animal ever discovered without a crucial structure inside its cells known as the centrosome. (Image credit: UCSF/J.Azimzadeh)

Reporting in the journal Science today, researchers at the University of California, San Francisco (UCSF) and the Stowers Institute for Medical Research in Kansas City, MO, have discovered that the worm lacks a key cellular structure called a “centrosome,” which scientists have considered essential for cell division.

Every animal ever examined, from the mightiest mammals to the lowliest insects, has these centrosomes in their cells.

“This is the first time we’ve found one that didn’t,” said Wallace Marshall, PhD, an associate professor in the Department of Biochemistry & Biophysics at UCSF, who led the research.

The fact that flatworms lack these centrosomes calls into question their purpose, Marshall added. “Clearly we have to rethink what centrosomes are actually doing,” he said.

The Necessity of Even Division
A central component of all multicellular life is the ability of cells to divide — and divide evenly. Before a cell divides, it has to assemble two exact copies of its DNA and then make sure that DNA sorts evenly into the two separate halves as they pinch off. Many health problems arise from cells losing this ability.

A hallmark of cancer, for instance, involves abnormalities in this division. Tumor cells often duplicate extra pieces of DNA. Certain forms of childhood mental retardation are also marked by abnormal divisions, which cause the loss of large pieces of DNA, leading to development problems in certain brain structures.

Centrosomes have been seen as animals’ ultimate evolutionary fix for this problem. Plants and fungi don’t have them, but animals have had centrosomes in their cells, as long as there have been animals. These structures were thought to play a central role in cell division — laying down track-like spindles onto which the cells sort their dividing DNA. Centrosomes were seen as so important to cell division that all animals were assumed to have them.

The discovery that at least one animal doesn’t came quite unexpectedly.

Interested in the basic mechanics of the centrosome, Marshall and UCSF postdoctoral researcher Juliette Azimzadeh, PhD, teamed up with Alejandro Sánchez Alvarado, PhD, a Howard Hughes Medical Institute and Stowers Institute investigator, who has worked with the flatworm Schmidtea mediterranea for several years.

Worm Regenerates Without Centrosomes
With a charming name that masks an otherwise humble appearance, this worm is a puddle wiggler just a few millimeters long at most. But its remarkable regenerative ability has made Schmidtea mediterranea a great scientific curiosity. When cut into tiny pieces, every piece will grow into a perfectly normal worm in a matter of days. Each offspring can then be segmented over and over again as well — it’s how the worm reproduces.

The original intention of the study Azimzadeh, Marshall and Sánchez Alvarado devised was to see what happened to the worm when it lost its centrosome.

Together they manipulated the flatworm to knock out genes needed to assemble these centrosomes. Without centrosomes the worms should have lost their ability to regenerate normally — or so they thought.

They were amazed to find that losing these structures didn’t affect the worms’ ability to regenerate at all. Then they looked more carefully at the worms and discovered that they never had these centrosomes in the first place.

“It came as a surprise to all of us,” said Sánchez Alvarado. What it means, he said, is that the evolutionary pressure that has maintained these structures in nearly all animals may have very little to do with cell division itself.

“There may be another function for centrosomes that is still obscured,” he said.

The article, “Centrosome Loss in the Evolution of Planarians,” by Juliette Azimzadeh, Mei Lie Wong, Diane Miller Downhour, Alejandro Sánchez Alvarado and Wallace F. Marshall, will be published in Science Express on Jan. 5, 2012.

In addition to UCSF and the Stowers Institute, authors of this paper are affiliated with the University of Utah School of Medicine in Salt Lake City.

The work was supported in part by the Howard Hughes Medical Institute, the W.M. Keck Foundation and the National Institute of General Medical Sciences.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>