Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Flatworm Flouts Fundamental Rule of Biology

Discovery at UCSF and Stowers Institute Shows Worm Regenerates Without Centrosome, a Structure Long Thought Necessary for Cell Division

A tiny, freshwater flatworm found in ponds and rivers around the world that has long intrigued scientists for its remarkable ability to regenerate has now added a new wrinkle to biology.

The freshwater flatworm Schmidtea mediterranea lives in southern Europe and Northern Africa is the first animal ever discovered without a crucial structure inside its cells known as the centrosome. (Image credit: UCSF/J.Azimzadeh)

Reporting in the journal Science today, researchers at the University of California, San Francisco (UCSF) and the Stowers Institute for Medical Research in Kansas City, MO, have discovered that the worm lacks a key cellular structure called a “centrosome,” which scientists have considered essential for cell division.

Every animal ever examined, from the mightiest mammals to the lowliest insects, has these centrosomes in their cells.

“This is the first time we’ve found one that didn’t,” said Wallace Marshall, PhD, an associate professor in the Department of Biochemistry & Biophysics at UCSF, who led the research.

The fact that flatworms lack these centrosomes calls into question their purpose, Marshall added. “Clearly we have to rethink what centrosomes are actually doing,” he said.

The Necessity of Even Division
A central component of all multicellular life is the ability of cells to divide — and divide evenly. Before a cell divides, it has to assemble two exact copies of its DNA and then make sure that DNA sorts evenly into the two separate halves as they pinch off. Many health problems arise from cells losing this ability.

A hallmark of cancer, for instance, involves abnormalities in this division. Tumor cells often duplicate extra pieces of DNA. Certain forms of childhood mental retardation are also marked by abnormal divisions, which cause the loss of large pieces of DNA, leading to development problems in certain brain structures.

Centrosomes have been seen as animals’ ultimate evolutionary fix for this problem. Plants and fungi don’t have them, but animals have had centrosomes in their cells, as long as there have been animals. These structures were thought to play a central role in cell division — laying down track-like spindles onto which the cells sort their dividing DNA. Centrosomes were seen as so important to cell division that all animals were assumed to have them.

The discovery that at least one animal doesn’t came quite unexpectedly.

Interested in the basic mechanics of the centrosome, Marshall and UCSF postdoctoral researcher Juliette Azimzadeh, PhD, teamed up with Alejandro Sánchez Alvarado, PhD, a Howard Hughes Medical Institute and Stowers Institute investigator, who has worked with the flatworm Schmidtea mediterranea for several years.

Worm Regenerates Without Centrosomes
With a charming name that masks an otherwise humble appearance, this worm is a puddle wiggler just a few millimeters long at most. But its remarkable regenerative ability has made Schmidtea mediterranea a great scientific curiosity. When cut into tiny pieces, every piece will grow into a perfectly normal worm in a matter of days. Each offspring can then be segmented over and over again as well — it’s how the worm reproduces.

The original intention of the study Azimzadeh, Marshall and Sánchez Alvarado devised was to see what happened to the worm when it lost its centrosome.

Together they manipulated the flatworm to knock out genes needed to assemble these centrosomes. Without centrosomes the worms should have lost their ability to regenerate normally — or so they thought.

They were amazed to find that losing these structures didn’t affect the worms’ ability to regenerate at all. Then they looked more carefully at the worms and discovered that they never had these centrosomes in the first place.

“It came as a surprise to all of us,” said Sánchez Alvarado. What it means, he said, is that the evolutionary pressure that has maintained these structures in nearly all animals may have very little to do with cell division itself.

“There may be another function for centrosomes that is still obscured,” he said.

The article, “Centrosome Loss in the Evolution of Planarians,” by Juliette Azimzadeh, Mei Lie Wong, Diane Miller Downhour, Alejandro Sánchez Alvarado and Wallace F. Marshall, will be published in Science Express on Jan. 5, 2012.

In addition to UCSF and the Stowers Institute, authors of this paper are affiliated with the University of Utah School of Medicine in Salt Lake City.

The work was supported in part by the Howard Hughes Medical Institute, the W.M. Keck Foundation and the National Institute of General Medical Sciences.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>