Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing games gone wrong - Trial-and-error behind important cause of female infertility

19.08.2011
When an egg cell is being formed, the cellular machinery which separates chromosomes is extremely imprecise at fishing them out of the cell’s interior, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have discovered.
The unexpected degree of trial-and-error involved in this process could explain why errors in the number of chromosomes in the egg cell are the leading cause of miscarriages and severe congenital diseases such as trisomies like Down’s syndrome, as well as an important cause of female infertility. The findings are published online today in Cell.

Our cells have two copies of each chromosome, one inherited from our mother and the other from our father. An oocyte, the cell that matures into an egg cell, has to discard half of its chromosomes, keeping only the maternal or paternal copy of each. To do so, fibres called microtubules act like fishing lines, attaching themselves to chromosomes and reeling them in to opposite sides of the cell. However, the EMBL scientists discovered that these microtubules are much worse fishermen than expected, often incorrectly hooking onto a chromosome and having to let it go again.

“We saw that they have to go through several tries before getting the connection right,” says Jan Ellenberg, who led the work at EMBL: “overall, 90% of all chromosomes get connected in the wrong way, and therefore the pathway that corrects these errors is heavily used.”

The difficulty in the oocyte is that two fishing lines cast from opposite sides of the cell have to attach themselves to the maternal and paternal copies of the same chromosome. Each of those chromosome copies has a protein structure called a kinetochore, which acts like the magnet in a toy fish, providing the spot for the microtubule ‘fishing lines’ to attach themselves. The EMBL scientists were the first to track the movement of all kinetochores throughout the whole 8 hours of the first round of cell division in mouse egg cells, which are very similar to human ones.

“We were able to get very high resolution images for extended periods of time,” explains Tomoya Kitajima, who carried out the work, “because our lab developed a microscope that automatically searches for chromosomes, zooms in, and scans only the area they are in, doing very little damage to the cell”.

Children playing magnetic fishing games often accuse others of cheating, using their fishing rod to move a fish into a position that makes it easier to catch. Ellenberg and Kitajima’s time-lapse videos show that fishing microtubules also ‘cheat’ in this way. At earlier stages of cell division, before they start attaching themselves to kinetochores, microtubules interact with the arms of the chromosomes, nudging them into position in a ‘belt’ around the centre of the spindle.

But not even this chromosome belt, which had never been observed before, is enough to ensure that microtubules fish out the chromosomes correctly. The EMBL scientists’ results show that kinetochore attachment is much more error-prone in this type of cell division, called meiosis, than in mitosis, the simpler form of cell division through which other cells in our body split in two. This is probably because the egg cell precursor is an inordinately large cell, and because in meiosis microtubules emanate from around 80 different places in the cell, rather than stemming only from two poles as they do in mitosis.

“Our findings provide a very plausible explanation for the high rate of errors during egg formation. They form the basis to focus our future work on age-related female infertility, as it seems very likely that a component of the pathway that corrects these errors will be involved” Ellenberg concludes.

Kitajima, T.S., Ohsugi, M. & Ellenberg, J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes.

Published online in Cell on 19 August 2011, DOI 10.1016/j.cell.2011.07.031

Policy regarding use

EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Contact:

Lena Raditsch
Head of Communications & Public Relations
European Molecular Biology Laboratory - EMBL
Meyerhofstr. 1
69117 Heidelberg
Germany

T: +49 6221 387 8125
F: +49 6221 387 8525
M:+49 151 14532784
lena.raditsch@embl.de

Lena Raditsch | EMBL Research News
Further information:
http://www.embl.org
http://www.eiroforum.org
http:// www.embl.de/press/2011/110819_Heidelberg

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>