Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish prone to melanoma get DNA decoded

16.04.2013
Scientists at Washington University School of Medicine in St. Louis and elsewhere have decoded the genome of the platyfish, a cousin of the guppy and a popular choice for home aquariums.

Among scientists, the fish are meticulously studied for their tendency to develop melanoma and for other attributes more common to mammals, like courting prospective mates and giving birth to live young.

Known scientifically as Xiphophorus maculatus, platyfish sport a variety of spectacular colors – brilliant oranges, yellows and a lovely iridescent silver – and myriad striped and speckled patterns. And when melanomas develop, they are easy to spot, even to an untrained eye.

“In platyfish, melanomas typically develop as black splotches along the tail and fins,” says senior author Wesley Warren, PhD, a geneticist at Washington University’s Genome Institute. “These fish are an ideal model for exploring the many unknowns of cancer, including how, when and where it develops in the body as well as its severity.”

Scientists at Washington University, the University of Würzburg in Germany and Texas State University led an international team involved in sequencing and analyzing the platyfish genome. Their findings are available online in Nature Genetics.

“Now that we have the genome in hand, we can tease apart the way genes interact with one another to cause melanoma,” says co-lead author Manfred Schartl, PhD, of the University of Würzburg in Germany. “Just as in human melanoma, genes that play a role in pigment cells also influence the development of melanoma in platyfish.”

The platyfish genome includes some 20,000 genes, roughly the same number found in the human genome. But unlike humans and other mammals, the chromosomes of the platyfish, like those in other fish, have remained remarkably intact over some 200 million years of evolution.

“It’s very much a mystery as to why these chromosomes are so structurally similar among fish species over long time periods of evolution because they live in vastly different aquatic environments,” says Warren.

The platyfish is a prolific breeder. But while most fish lay eggs, platyfish females give birth to live young, often in broods of more than 100.

Comparing the genes of platyfish to those in mice and other mammals that give birth to their young, the scientists found a number of altered genes in the fish involved in live-bearing birth.

“Surprisingly, we found that the platyfish retain some yolk-related genes typically found in fish that lay eggs to produce their offspring, and genes involved in placenta function and egg fertilization displayed unique molecular changes,” says co-lead author Ron Walter, PhD, of Texas State University.

While humans are known for their higher-level thinking and behaviors, platyfish and other fish have evolved their own set of complex behaviors, like courting, schooling and avoiding predators that far exceed the abilities of amphibians, reptiles and other lower vertebrates. Looking through the platyfish genome, the researchers found a number of gene copies linked to cognition in humans and other mammals that could underlie these behaviors.

“These gene copies were retained at a high rate in the platyfish, which give them a chance to evolve different functions,” Warren explains. “In this case, we believe the extra gene copies gave platyfish and other related fish the ability to develop more complex behaviors, which is unexpected for many lower-level vertebrates.”

The research is funded by the National Institutes of Health, National Center for Research Resources and the Office of Research Infrastructure Programs.

Schartl M, Walter, RB, Shen Y, Garcia T, Catchen J, Amores A, Braasch I, Chalopin D, Volff J-N, Lesch K-P, Bisazza A, Minx P, Hillier L, Wilson RK, Fuerstenberg S, Boore J, Searle S, Postlethwait JH and Warren WC. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaption and several complex traits. Nature Genetics. March 31, 2013.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>