Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why fish is so good for you

05.03.2013
Scientists of Friedrich Schiller University Jena and Jena University Hospital decode the antihypertensive impact of omega-3 fatty acids

Fish is healthy: easy to digest and with a high level of precious proteins, fish is considered an important part of a healthy diet. And with the so-called omega-3 fatty acids fish contains real ‘fountains of youth‘.

These fatty acids – like docosahexaeonic acid (DHA) occur mostly in fatty fish like herring, salmon and mackerel. They are thought to lower the blood pressure, to strengthen the immune system and to have positive effects on the development on the nervous system and the cardiovascular system.

“Clinical studies about the intake of nutritional supplements containing omega-3 fatty acids haven’t provided complete clarity so far,“ Prof. Dr. Stefan H. Heinemann from Friedrich Schiller University Jena (Germany) says. “The molecular impact of the omega-3 fatty acids isn’t fully understood yet,” the biophysicist continues. But now scientists of the DFG research group FOR 1738 based at Jena University are able to bring new facts to light: in two newly published articles for the well-known science magazine ‘Proceedings of the National Academy of Sciences, USA’ they describe how they analyzed the impact of omega-3 fatty acids on a systemic level and they also described the underlying molecular mechanisms for the first time.

The teams around Prof. Heinemann (Jena University), Prof. Dr. Michael Bauer (Jena University Hospital) and Prof. Dr. Toshinori Hoshi (University of Pennsylvania) were able to show that the so-called ‘SLO1’ potassium channel is an important component in the effectiveness of omega-3 fatty acids. “These ionic channels act like very specific receptors for DHA and are opened by the binding of the omega-3 fatty acids,” Biophysicist Heinemann explains. In the case of other omega-3 fatty acids – like the shorter eicosapentaenoic acid (EPA) or the alpha-linolenic acid (ALA) extracted from plants – the impact is much weaker.

Prof. Bauer and his colleagues examined the effects of omega-3 fatty acids on SLO1 channels of the cardiovascular system by experimenting with mice. “Administration of DHA should result in an expansion of the blood vessels and consequently a drop in blood pressure,” the physician says. The laboratory experiments confirmed exactly that. In genetically modified mice however, which were not able to produce the SLO1 channel, the antihypertensive impact of DHA failed to appear. ”Thus we were able to show for the first time that DHA directly influences the blood pressure, which is being mediated through SLO1 channels,” Bauer summarizes.

Beyond that, the scientists made another surprising discovery: a variant of DHA, which can often be found in nutritional supplements containing omega-3 fatty acids, doesn’t show an antihypertensive effect. Moreover, it suppresses and even diminishes the effect of the natural DHA from fish oil. “The intake of non-natural omega-3 fatty acids can therefore also have counter-productive effects,” Prof. Bauer stresses. This is of particular importance for the nutritional supplements of patients in intensive care who are being drip-fed: their supplements of omega-3 fatty acids should be specifically aimed at and adapted to the patients’ clinical requirements.

Original Publications:
Hoshi, T., B. Wissuwa, T. Tian, N. Tajima, R. Xu, M. Bauer, S.H. Heinemann, S. Hou (2013) Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels. Proceedings of the National Academy of Sciences USA (DOI: 10.1073/pnas.1221997110)
Hoshi, T., T. Tian, R. Xu, S.H. Heinemann, S. Hou (2013) Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA. Proceedings of the National Academy of Sciences USA (DOI: 10.1073/pnas.1222003110)

Contact:
Prof. Dr. Stefan H. Heinemann
Institute for Biochemistry and Biophysics
Center for Molecular Biomedicine (CMB)
Friedrich Schiller University Jena and Jena University Hospital
Hans-Knöll-Str. 2
D-07745 Jena
Germany
Phone: ++49 3641 / 9395650
Email: stefan.h.heinemann[at]uni-jena.de

Prof. Dr. Michael Bauer
Department of Anesthesiology and Intensive Care Medicine
Center for Sepsis Control and Care (CSCC), Jena University Hospital
Erlanger Allee 101
D-07747 Jena
Germany
Phone: ++49 3641 / 9323110
Email: michael.bauer[at]med.uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>