Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish frozen in fear

20.12.2010
Fear responses of zebrafish are controlled by brain structures of previously unknown function

A brain structure called the habenula is crucial for modifications of fear responses in zebrafish, according to a new study by researchers from the RIKEN Brain Science Institute, Wako(1). The zebrafish dorsal habenula is subdivided into two regions, each connected to different brain structures, but the function of each, and the significance of their connections, was unclear.

Hitoshi Okamoto and his colleagues used fluorescent dyes to trace the neural pathways from the interpeduncular nucleus (IPN), which recves connections from the dorsal habenula region . They fond that the dorsal IPN projects to midbrain structures called the dorsal raphe nucleus and griseum centrale. The corresponding structures in the mammalian brain have been implicated in responses to fear and stress, suggesting that the habenula–IPN pathway in zebrafish is also involved in these responses.

To investigate this, the researchers created transgenic zebrafish expressing tetanus toxin in the lateral subnucleus of the dorsal habenula. The toxin blocks neurotransmission, preventing neurons in that region from sending signals.

The transgenic fish were then subjected to an established fear conditioning task, in which a red light is repeatedly paired with an electric shock. Normally, the fish learn to associate the two stimuli, and become agitated—recognized by an increase in the frequency of turning—in the presence of the light alone. However, when the transgenic fish encountered the red light after the fear conditioning task, they froze rather than escaping. Okamoto and colleagues observed these differences between the transgenic fish and controls during the fear conditioning task. Both froze the first time they encountered the red light; the controls started to become agitated the second time, but the transgenic fish continued to freeze.

The exploratory behavior of the transgenic fish was no different from that of the controls, showing that their responses to fear conditioning were not due to abnormal sensory or motor function. Instead, the results suggest to the researchers that the transgenic fish cannot modify their fear response after new experiences. They therefore conclude that experience-dependent modifications of fear responses are controlled by the neurons in the lateral subnucleus of the dorsal habenula in the zebrafish.

“We would like to know whether the same regulation mechanism works in mammals, including humans,” says Okamoto, “and would also like to extend our research to reveal the functions of the other parts of the habenula.”

The corresponding author for this highlight is based at the Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute.

Journal information

1. Agetsuma, M., Aizawa, H., Aoki, T., Nakayama, R., Takahoko, M., Goto, M., Sassa, T., Amo, R., Shiraki, T., Kawakami, K., et al. The habenula is crucial for experience-dependent modification of fear responses in zebrafish. Nature Neuroscience 13, 1354–1356 (2010).

gro-pr | Research Asia Research News
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Brain IPN Okamoto RIKEN Science TV brain structure transgenic fish

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>