Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish may actually feel pain and react to it much like humans

05.05.2009
Fish don't make noises or contort their faces to show that it hurts when hooks are pulled from their mouths, but a Purdue University researcher believes they feel that pain all the same.

Joseph Garner, an assistant professor of animal sciences, helped develop a test that found goldfish do feel pain, and their reactions to it are much like that of humans. A paper detailing the finding was published in the early online version of the journal Applied Animal Behaviour Science.

"There has been an effort by some to argue that a fish's response to a noxious stimuli is merely a reflexive action, but that it didn't really feel pain," Garner said. "We wanted to see if fish responded to potentially painful stimuli in a reflexive way or a more clever way."

Garner and Janicke Nordgreen, a doctoral student in the Norwegian School of Veterinary Science, attached small foil heaters to the goldfish and slowly increased the temperature. The heaters were designed with sensors and safeguards that shut off the heaters to prevent any physical damage to a fish's tissue.

Half of the fish were injected with morphine, and the others received saline. The researchers believed that those with the morphine would be able to withstand higher temperatures before reacting if they actually felt the pain. However, both groups of fish showed a response at about the same temperature.

Because both groups of fish wriggled at about the same temperature, the researchers thought the responses might be more like a reflex than a cognitive reaction to experiencing pain. The reflexive response is similar to a person involuntarily moving a hand off a hot stove with which they had come into contact. The reaction happens before a person actually experiences pain or understands that they have been hurt.

Upon later observation in their home tanks, however, the researchers noticed that the fish from each group were exhibiting different behaviors.

"The fish given the morphine acted like they always had: swimming and being fish," Garner said. "The fish that had gotten saline - even though they responded the same in the test - later acted different, though. They acted with defensive behaviors, indicating wariness, or fear and anxiety."

Nordgreen said those behavioral differences showed that fish can feel both reflexive and cognitive pain.

"The experiment shows that fish do not only respond to painful stimuli with reflexes, but change their behavior also after the event," Nordgreen said. "Together with what we know from experiments carried out by other groups, this indicates that the fish consciously perceive the test situation as painful and switch to behaviors indicative of having been through an aversive experience."

Garner believes that the morphine blocked the experience of pain, but not behavioral responses to the heat stimulus itself - either because the responses were reflexive or because the morphine blocked the experience of pain, but not the experience of an unusual stimulus.

"If you think back to when you have had a headache and taken a painkiller, the pain may go away, but you can still feel the presence or discomfort of the headache," Garner said.

Those with saline both experienced pain in the test, as well as responding to it, and were able to cognitively process that pain, thus causing the later fear and anxiety.

"The goldfish that did not get morphine experienced this painful, stressful event. Then two hours later, they turned that pain into fear like we do," Garner said. "To me, it sounds an awful lot like how we experience pain."

The findings could raise questions about slaughter methods and how fish are handled in research. Garner said standards of care could be revisited to ensure fish are being treated humanely.

Writer: Brian Wallheimer, (765) 496-2050, bwallhei@purdue.edu
Sources: Joseph Garner, (765) 494-1780, jgarner@purdue.edu
Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>