Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish may actually feel pain and react to it much like humans

05.05.2009
Fish don't make noises or contort their faces to show that it hurts when hooks are pulled from their mouths, but a Purdue University researcher believes they feel that pain all the same.

Joseph Garner, an assistant professor of animal sciences, helped develop a test that found goldfish do feel pain, and their reactions to it are much like that of humans. A paper detailing the finding was published in the early online version of the journal Applied Animal Behaviour Science.

"There has been an effort by some to argue that a fish's response to a noxious stimuli is merely a reflexive action, but that it didn't really feel pain," Garner said. "We wanted to see if fish responded to potentially painful stimuli in a reflexive way or a more clever way."

Garner and Janicke Nordgreen, a doctoral student in the Norwegian School of Veterinary Science, attached small foil heaters to the goldfish and slowly increased the temperature. The heaters were designed with sensors and safeguards that shut off the heaters to prevent any physical damage to a fish's tissue.

Half of the fish were injected with morphine, and the others received saline. The researchers believed that those with the morphine would be able to withstand higher temperatures before reacting if they actually felt the pain. However, both groups of fish showed a response at about the same temperature.

Because both groups of fish wriggled at about the same temperature, the researchers thought the responses might be more like a reflex than a cognitive reaction to experiencing pain. The reflexive response is similar to a person involuntarily moving a hand off a hot stove with which they had come into contact. The reaction happens before a person actually experiences pain or understands that they have been hurt.

Upon later observation in their home tanks, however, the researchers noticed that the fish from each group were exhibiting different behaviors.

"The fish given the morphine acted like they always had: swimming and being fish," Garner said. "The fish that had gotten saline - even though they responded the same in the test - later acted different, though. They acted with defensive behaviors, indicating wariness, or fear and anxiety."

Nordgreen said those behavioral differences showed that fish can feel both reflexive and cognitive pain.

"The experiment shows that fish do not only respond to painful stimuli with reflexes, but change their behavior also after the event," Nordgreen said. "Together with what we know from experiments carried out by other groups, this indicates that the fish consciously perceive the test situation as painful and switch to behaviors indicative of having been through an aversive experience."

Garner believes that the morphine blocked the experience of pain, but not behavioral responses to the heat stimulus itself - either because the responses were reflexive or because the morphine blocked the experience of pain, but not the experience of an unusual stimulus.

"If you think back to when you have had a headache and taken a painkiller, the pain may go away, but you can still feel the presence or discomfort of the headache," Garner said.

Those with saline both experienced pain in the test, as well as responding to it, and were able to cognitively process that pain, thus causing the later fear and anxiety.

"The goldfish that did not get morphine experienced this painful, stressful event. Then two hours later, they turned that pain into fear like we do," Garner said. "To me, it sounds an awful lot like how we experience pain."

The findings could raise questions about slaughter methods and how fish are handled in research. Garner said standards of care could be revisited to ensure fish are being treated humanely.

Writer: Brian Wallheimer, (765) 496-2050, bwallhei@purdue.edu
Sources: Joseph Garner, (765) 494-1780, jgarner@purdue.edu
Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>