Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish may actually feel pain and react to it much like humans

05.05.2009
Fish don't make noises or contort their faces to show that it hurts when hooks are pulled from their mouths, but a Purdue University researcher believes they feel that pain all the same.

Joseph Garner, an assistant professor of animal sciences, helped develop a test that found goldfish do feel pain, and their reactions to it are much like that of humans. A paper detailing the finding was published in the early online version of the journal Applied Animal Behaviour Science.

"There has been an effort by some to argue that a fish's response to a noxious stimuli is merely a reflexive action, but that it didn't really feel pain," Garner said. "We wanted to see if fish responded to potentially painful stimuli in a reflexive way or a more clever way."

Garner and Janicke Nordgreen, a doctoral student in the Norwegian School of Veterinary Science, attached small foil heaters to the goldfish and slowly increased the temperature. The heaters were designed with sensors and safeguards that shut off the heaters to prevent any physical damage to a fish's tissue.

Half of the fish were injected with morphine, and the others received saline. The researchers believed that those with the morphine would be able to withstand higher temperatures before reacting if they actually felt the pain. However, both groups of fish showed a response at about the same temperature.

Because both groups of fish wriggled at about the same temperature, the researchers thought the responses might be more like a reflex than a cognitive reaction to experiencing pain. The reflexive response is similar to a person involuntarily moving a hand off a hot stove with which they had come into contact. The reaction happens before a person actually experiences pain or understands that they have been hurt.

Upon later observation in their home tanks, however, the researchers noticed that the fish from each group were exhibiting different behaviors.

"The fish given the morphine acted like they always had: swimming and being fish," Garner said. "The fish that had gotten saline - even though they responded the same in the test - later acted different, though. They acted with defensive behaviors, indicating wariness, or fear and anxiety."

Nordgreen said those behavioral differences showed that fish can feel both reflexive and cognitive pain.

"The experiment shows that fish do not only respond to painful stimuli with reflexes, but change their behavior also after the event," Nordgreen said. "Together with what we know from experiments carried out by other groups, this indicates that the fish consciously perceive the test situation as painful and switch to behaviors indicative of having been through an aversive experience."

Garner believes that the morphine blocked the experience of pain, but not behavioral responses to the heat stimulus itself - either because the responses were reflexive or because the morphine blocked the experience of pain, but not the experience of an unusual stimulus.

"If you think back to when you have had a headache and taken a painkiller, the pain may go away, but you can still feel the presence or discomfort of the headache," Garner said.

Those with saline both experienced pain in the test, as well as responding to it, and were able to cognitively process that pain, thus causing the later fear and anxiety.

"The goldfish that did not get morphine experienced this painful, stressful event. Then two hours later, they turned that pain into fear like we do," Garner said. "To me, it sounds an awful lot like how we experience pain."

The findings could raise questions about slaughter methods and how fish are handled in research. Garner said standards of care could be revisited to ensure fish are being treated humanely.

Writer: Brian Wallheimer, (765) 496-2050, bwallhei@purdue.edu
Sources: Joseph Garner, (765) 494-1780, jgarner@purdue.edu
Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>