Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish cancer gene linked to pigment pattern that attracts mates

20.08.2008
Swordtails can inherit melanoma that drives sexual selection

Though skin cancer is deadly to male fish, it also has one perk: The black melanoma splotches arise from attractive natural markings that lure female mates.

A new study published in the Proceedings of the National Academy of Sciences this week shows that the melanoma gene can be conserved in swordtail fish because of its beneficial role in sexual selection.

Ohio University scientists André Fernandez and Molly Morris studied three populations of female swordtails, tiny freshwater fish native to North and Central America, and found that two of them preferred males whose tails were painted to resemble the skin cancer spots. The researchers also examined specimens of swordtail fish with real melanomas, which confirmed that the cancer gene is switched on only in the tissue with the dark pigment. The study marks the first time scientists have found a cancer gene linked to a pigment pattern that functions to increase mating success in animals.

In the current study, the researchers placed a female swordtail in the middle of a tank with two partitions. They positioned a male with the faux pattern from which melanomas form on one side, and a male without the pattern on the other. After releasing the female from an opaque tube into the tank's center chamber, the scientists observed how much time she spent looking at each male during an eight-minute period. The project builds on previous studies in the Morris lab, which used the same tests to show that female swordtails are strongly attracted to males with dark vertical bars.

To avoid any bias the female might have for a particular side of the tank, Fernandez then switched the males. Two days later, he conducted the trials again, this time changing which male received the painted skin cancer spot. The female consistently chose the male with the dark pigmented marking in two of the three populations, he said.

But the research suggests that the swordtail fish population also keeps the prevalence of the cancer gene in check. A third population of females in the study rejected the males painted with the pattern that can form melanomas. The scientists suspect that's because the third group had a higher ratio of both males and females with the gene for skin cancer, which increases the likelihood of too many offspring inheriting the gene and dying off.

Swordtail fish usually live for 1.5 to 2 years in the wild and sexually mature at 4.5 months. The ones with the skin cancer gene can develop melanomas at about 7 months and die a few months later.

"Melanoma formation cuts the reproductive life cycle in half," Fernandez said. "It has a huge cost for males."

But during the few months when the male is sexually mature and healthy, he also can produce a lot of offspring, he noted.

The swordtail melanoma has been studied since the 1920s, and scientists previously believed that fish developed the cancer only in captivity. But in the recent study, 10 percent of the swordtails collected from the third population in Mexico also exhibited the disease, said Fernandez, who joins the University of Texas M.D. Anderson Cancer Center this fall as a postdoctoral fellow. He hopes to conduct further studies on the habitat, such as whether stronger exposure to the sun's UV rays might be driving more instances of skin cancer in the wild.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>