Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-time reconstruction of infectious bat influenza viruses

25.10.2016

Now a team at the Institute for Virology of the Medical Center – University of Freiburg, Germany, together with scientists from Switzerland and the USA, report a break-through in isolating a bat influenza virus by reconstituting fully functional bat influenza viruses in the laboratory. Unexpectedly, the bat influenza viruses infected not only bat cells but also dog and human cells. A corresponding study was published online on October 24, 2016, in the renowned journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

All known Influenza A viruses originate from aquatic birds that serve as virus reservoirs in nature. Avian viruses can cause severe disease and may lead to devastating pandemics when introduced into the human population.


Researchers found influenza-like viruses in the bat species Sturnira lilium

© Juan Cruzado Cortés

Therefore, a world-wide surveillance program has been set up to monitor influenza virus activity in birds. It is presently unknown, however, whether additional animal reservoirs of influenza viruses exist. Surprisingly, bats were recently identified as a potential new source of influenza viruses. Genome sequences of influenza A-like viruses were identified in fruit bats in Central and South America.

Yet, all attempts to isolate infectious viruses from carrier bats have so far failed, and bat viruses could not be studied in the laboratory. Bats are mammals, as are humans, and so it is prudent to analyze such potentially harmful mammalian influenza viruses as well.

Now a team at the Institute for Virology of the Medical Center – University of Freiburg, Germany, together with scientists from Switzerland and the USA, report a break-through in isolating a bat influenza virus by reconstituting fully functional bat influenza viruses in the laboratory. Unexpectedly, the bat influenza viruses infected not only bat cells but also dog and human cells. A corresponding study was published online on October 24, 2016, in the renowned journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Reconstructed bat influenza virus is essential for risk assessment

A first step in generating bat influenza A-like viruses was to select cell lines susceptible to infection. Such cells needed to express receptors on the cell surface for bat virus attachment and entry. The research teams analyzed over 30 cell lines from different species for their capacity to recognize and internalize bat influenza viruses. They did this by first using another virus, vesicular stomatitis virus, which can infect many different cell types. The trick was that they engineered this virus to incorporate on its own surface a bat influenza virus protein that the bat virus normally uses for entry into cells.

Then the cell line most susceptible to the engineered vesicular stomatitis virus was used to reconstruct the original bat influenza A-like virus, starting out with the known influenza-like viral genome sequences isolated from the bats. “Infectious bat viruses were readily obtained. Interestingly, most cells, including human cells, that supported infection with the vesicular stomatitis indicator virus were also susceptible to direct infection with the reconstructed bat influenza virus”, explains Prof. Martin Schwemmle, group leader at the Institute for Virology at the Medial Center – University of Freiburg.

Bats are natural hosts for several highly pathogenic viruses. In the past, Ebola and rabies virus were repeatedly transmitted from bats to humans and caused deadly diseases. The new observation that human cells can be infected with bat influenza A-like viruses is a hint that these viruses could also potentially be transmitted to humans. Although there is no evidence yet for such transmissions, the new findings are a wake-up call for more research. “It is too early to jump to definite conclusions on the ability of these virus to cross the species barrier and infect humans but our studies make it possible now to conduct further experiments and analyze the risk that these viruses pose for other species”, says Prof. Schwemmle.

Title of the publication: Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism

DOI: 10.1073/pnas.1608821113

Contact:
Prof. Dr. Martin Schwemmle
Research group leader
Institute for Virology
Medical Center – University of Freiburg
Phone: +49 761 203-6526
martin.schwemmle@uniklinik-freiburg.de

Weitere Informationen:

http://www.pnas.org/content/early/2016/10/20/1608821113.abstract link to the study publication

Benjamin Waschow | idw - Informationsdienst Wissenschaft

Further reports about: Virology bats infect influenza virus vesicular stomatitis virus viruses

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>