Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First complexation of multiple CO molecules to a non-metal atom

18.06.2015

For the first time, Würzburg scientists have successfully bound multiple carbon monoxide molecules to the main group element boron. They report on their work in the latest issue of the scientific journal Nature.

Scientists of Professor Holger Braunschweig's team of the Institute of Inorganic Chemistry at the University of Würzburg have successfully bound two carbon monoxide molecules (CO) to the main group element boron in a direct synthesis for the first time. The result is a borylene-dicarbonyl complex.


Caption 1: Molecular structure of the borylene-dicarbonyl in the solid determined by x-ray structure analysis

(Picture: Dr. Florian Hupp and Dr. Krzysztof Radacki)

Such complexes, or coordination complexes, are generally made up of one or more central molecules and one or more ligands. The central molecules are usually atoms of transition metals.

"Binding one CO molecule to a main group element is already extraordinary. Bonding two molecules two one non-metal atom is even more extraordinary," says chemist Rian Dewhurst. Dewhurst, who is working on Professor Holger Braunschweig's team, submitted the article together with several co-authors. It is the first work of the institute to have been accepted by the journal Nature.

"In future, borylene-dicarbonyls could be used to mimic the properties of transition metal carbonyl complexes," Dewhurst further. Transition metals have specific electronic properties. These elements from group four to twelve in the periodic table have the ability to bind multiple carbon monoxide molecules relatively easily.

Advantages of boron compounds

Generally, boron compounds are important for various industrial applications. They are used, for example, in catalytic processes, in various molecular and solid materials or in the production of pharmaceutical drugs. A catalyst accelerates a desired chemical reaction without being consumed in the process.

Boron has the advantage of being readily available and comparably low-priced. It occurs naturally mostly in mineral form and is mined in borate mines in California and Turkey, for example. Moreover, the element is non-toxic for humans and other mammals. "Combined with its unique electronic properties, this makes boron very interesting for industrial and other commercial uses," Dewhurst explains.

Boron is a highly reactive element. With three electrons on the outer shells, boron strives to form bonds that enable eight electrons, which the noble gases neon, argon or xenon already have in their basic state.

Lone electron pair at the central molecule

The borylene-dicarbonyl complex also has eight electrons involved in the bonds to the boron atom. With two electrons, respectively, presenting the bonds to the two CO molecules and two others binding one hydrocarbyl, the researchers were able to establish one lone electron pair amounting to eight electrons in total. "It is the lone electron pair that makes the complex special. The hydrocarbyl assures stability. It shields the structure in a manner of speaking," says Marco Nutz, a doctoral candidate. He adds: "Most compounds that can be isolated in this way are unstable outside a protective atmosphere." The Würzburg discovery, however, remains stable for several days even in a "normal" environment exposed to air and moisture.

Dewhurst and Nutz are conducting basic research. "In a next step, we are going to further investigate the compound we have presented. We are pursuing different angles here," Dewhurst says. One focus will be to compare the properties of conventional transition metal carbonyl complexes with those of the borylene-carbonyl complex in detail.

In recent years, the attention of natural science has progressively focused on boron. According to Dewhurst, the increasing significance of boron is also reflected in the growing interest in the element on the part of organic chemistry and in the fact that material science, too, is closely following the advances made in boron complex research.

"Multiple Complexation of CO and Related Ligands to a Main Group Element" by Holger Braunschweig, Rian D. Dewhurst, Florian Hupp, Marco Nutz, Krzysztof Radacki, Christopher W. Tate, Alfredo Vargas, Qing Ye. Nature vol 522, issue 7556 pp.327-330, DOI 10.1038/nature14489

Contact:
Prof. Holger Braunschweig, Institute of Inorganic Chemistry at the University of Würzburg
Phone: +49 931 31-88104, e-mail: h.braunschweig@uni-wuerzburg.de

Weitere Informationen:

http://www.presse.uni-wuerzburg.de University's press office

Marco Bosch | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>