Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First cancer immunotherapy for dogs developed

04.07.2014

Nearly every second dog develops cancer from the age of ten years onward. A few therapies derived from human medicine are available for dogs.

A very successful form of therapy by which antibodies inhibit tumor growth has not been available for animals so far. Scientists at the inter-university Messerli Research Institute of the Vetmeduni Vienna, the Medical University of Vienna, and the University of Vienna have developed, for the first time, antibodies to treat cancer in dogs. The scientists published their research data in the journal Molecular Cancer Therapeutics.


The newly developed antibody brings hope for sick dogs.

Photo: Michael Bernkopf / Vetmeduni Vienna

As in humans, cancers in dogs have complex causes. The interaction of the environment, food, and genetic disposition are the most well known factors. Today nearly all methods of human medicine are basically available for dogs with cancer, but this was not true of cancer immunotherapy so far.

So-called cancer immunotherapy - which is the treatment of tumors by the use of antibodies - has been established and used very successfully in human medicine for about 20 years. Since cancer cells bear very specific antigens on the surface, the corresponding antibodies bind to these molecules and thus inhibit tumor growth. The mechanism that becomes effective is a destructive signal sent by the antibody to the inside of the cancer cell and initiates its death. In a second mechanism, the immune system of the patient also destroys the "marked" tumor in a more efficient way.

The target is nearly identical in humans and dogs

Josef Singer and Judith Fazekas, both lead authors of the study, discovered that a receptor frequently found on human tumor cells (epidermal growth factor receptor or EGFR) is nearly 100 percent identical with the EGF receptor in dogs. In human medicine EGFR is frequently used as the target of cancer immunotherapy because many cancer cells bear this receptor on their surface. The so-called anti-EGFR antibody binds to cancer cells and thus triggers the destruction of the cells. "Due to the high similarity of the receptor in humans and dogs, this type of therapy should work well in dogs too," the scientists say. The binding site of the antibody to EGFR in man and dogs differs only in respect of four amino acids.

Antibody trimmed to "dog"

To ensure best possible binding of the antibody to cancer cells in dogs, the human antibody had to be trimmed to "dog" in the laboratory. In human medicine this process is known as the "humanization" of an antibody. The antibody originally produced in the mouse has to be adjusted to the species for which it is used. Singer and Fazekas replaced the corresponding elements in the “humanized” antibody with elements from the dog. In experiments on dog cancer cells in the laboratory it was found that the newly developed antibodies did, in fact, bind to canine cancer cells with greater specificity.

The head of the study, Professor Erika Jensen-Jarolim, explains as follows: "We expect dogs to tolerate these anti-cancer antibodies well. This will be investigated in clinical studies in the future and is expected to greatly improve the treatment as well as the diagnosis of cancer in dogs."

Improvement of diagnosis

The newly developed antibody provides an additional benefit for dogs. As in human medicine, antibodies can be coupled with signal molecules. When the antibody binds to a cancer cell in the organism, the coupled antibody - in this case a radioactive isotope - can be rendered visible and is thus able to show where tumors and even metastases are located. When the selected isotope also contributes to the decay of cancer cells, the approach is known as "theranostics" (therapy and diagnostics).

"The Veterinary Medical University, Vienna will be the first center in the world to offer the most modern immunological cancer diagnosis procedure for dogs. Of special interest to me as a doctor of human medicine is the fact that, by using this approach, we will be able to initiate improvements that will benefit humans as well," says Jensen-Jarolim.

The first anti-EGFR antibody (cetuximab) for cancer treatment in human medicine was developed by the company Merck. In humans it is primarily used for the treatment of bowel cancer. Cancer immunotherapy is mainly applied in combination with chemotherapy and radiotherapy. In veterinary medicine, immunotherapy will be employed for the treatment of mammary ridge cancer (milk line cancer) in dogs. It may also be used as part of a combination therapy.

The article „Generation of a Canine Anti-EGFR (ErbB-1) Antibody for
Passive Immunotherapy in Dog Cancer Patients“, by Josef Singer, Judit Fazekas, Wei Wang, Marlene Weichselbaumer, Miroslawa Matz, Alexander Mader, Willibald Steinfellner, Sarah Meitz, Diana Mechtcheriakova, Yuri Sobanov, Michael Willmann, Thomas Stockner, Edzard Spillner, Renate Kunert and Erika Jensen-Jarolim was published in the Journal Molecular Cancer Therapeutics. doi: 10.1158/1535-7163.MCT-13-0288
http://mct.aacrjournals.org/content/early/2014/06/21/1535-7163.MCT-13-0288.long

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Erika Jensen-Jarolim
Messerli Research Institute – Comparative Medicine
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 20577-2660
M +43 664 60257-6260
erika.jensen-jarolim@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Stress triggers key molecule to halt transcription of cell's genetic code
28.05.2015 | Stowers Institute for Medical Research

nachricht Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery
28.05.2015 | University of Waterloo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>