Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First 3D Model of a Synapse

30.05.2014

A glance into a new world for neuroscience: research team from Göttingen led by Prof. Dr. Silvio O. Rizzoli present the first scientifically accurate 3D model of a synapse. Published May 30th 2014 in SCIENCE.

Synapses are the contacts between nerve cells that allow the flow of information that makes our brains work. However, the molecular architecture of these highly complex structures has been unknown until now. A research team from Göttingen, led by Prof. Silvio O. Rizzoli from the DFG Research Center and Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) of the University Medical Center Göttingen, managed to determine the copy numbers and positions of all important building blocks of a synapse for the first time.


The first 3D model of a synapse. The reconstruction shows a synapse in cross section. The small spheres are synaptic vesicles. The model shows 60 different proteins, which sum to more than 300,000 copies of a single protein in the synapse.

Burkhard Rammner

This allowed them to reconstruct the first scientifically accurate 3D model of a synapse. This effort has been made possible only by a collaboration of specialists in electron microscopy, super-resolution light microscopy (STED), mass spectrometry, and quantitative biochemistry from the UMG, the Max Planck Institute for Biophysical Chemistry, Göttingen, and the Leibniz Institute for Molecular Pharmacology, Berlin.

The project was funded by the European Research Council (ERC) and the Deutsche Forschungsgemeinschaft (DFG). The results have been published in the renowned scientific journal SCIENCE on May 30th 2014. Highlighting the impact of this work, the presented model has been selected as the cover of the respective issue of the SCIENCE journal.

Original publication:
Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B, Koo SJ, Claßen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. SCIENCE, May 30th, 2014. 344(6187): 1023-1028. DOI: 10.1126/science.1252884.

A New and Undiscovered Land in Neuroscience
“This 3D model of a synapse opens a new world for neuroscientists,” says Prof. Rizzoli, senior author of the publication. Particularly the abundance and distribution of the building blocks have long been terra incognita, an undiscovered land. The model presented by Prof. Rizzoli and his team now shows several hundreds of thousands of individual proteins in correct copy numbers and at their exact localisation within the nerve cell.

“The new model shows, for the first time, that widely different numbers of proteins are needed for the different processes occurring in the synapse,” says Dr. Benjamin G. Wilhelm, first author of the publication. The new findings reveal: proteins involved in the release of messenger substances (neurotransmitters) from so called synaptic vesicles are present in up to 26,000 copies per synapse. Proteins involved in the opposite process, the recycling of synaptic vesicles, on the other hand, are present in only 1,000-4,000 copies per synapse.

These details help to solve a long-lasting controversy in neuroscience: how many synaptic vesicles within the synapse can be used simultaneously? Apparently, more than enough proteins are present to ensure vesicle release, but the proteins for vesicle recycling are sufficient for only 7-11% of all vesicles in the synapse. This means that the majority of vesicles in the synapse cannot be used simultaneously.

The most important insight the new model reveals, is however that the copy numbers of proteins involved in the same process scale to an astonishingly high degree. The building blocks of the cell are tightly coordinated to fit together in number, comparable to a highly efficient machinery. This is a very surprising finding and it remains entirely unclear how the cell manages to coordinate the copy numbers of proteins involved in the same process so closely.

The new model will serve as a reference source for neuroscientists of all specialisations in the future, and will support future research, since the copy number of proteins can be an important indicator for their relevance. But the research team led by Prof. Rizzoli does not plan to stop there: “Our ultimate goal is to reconstruct an entire nerve cell”. Combined with functional studies on the interaction of individual proteins this would allow to simulate cellular function in the future – the creation of a “virtual cell”.
An impressive video animation has been created from the obtained data to visualise the structure and protein distribution of a synapse (http://www.sciencemag.org/content/344/6187/1023/suppl/DC1).

For his approach to study the molecular anatomy of nerve cells, Prof. Rizzoli has already been awarded an ERC Consolidator Grant 2013. "The findings of Prof. Rizzoli are spectacular", says Prof. Dr. Heyo Kroemer, Speaker of the UMG board and dean of the Faculty of Medicine. "This highly precise synaptic model will provide completely new possibilities for medical research. This is another example demonstrating that the University Medical Center Göttingen provides attractive conditions for international top-level research." Prof. Mathias Bähr, one of the CNMPB speakers, says “We are very excited that Prof. Rizzoli succeeded in accomplishing this project so fast. This study significantly advances our general understanding of the protein distribution within healthy nerve cells. In the future, these findings will contribute to identify anomalies in neuronal anatomy in neurodegenerative diseases, such as Parkinson’s disease.”

FURTHER INFORMATION:
Prof. Dr. Silvio O. Rizzoli
Dept. Neuro- and Sensory Physiology, University Medical Center Göttingen European Neuroscience Institute (ENI) Göttingen
Grisebachstraße 5, 37077 Göttingen
Phone: +49 (0) 551 39-33630
srizzol@gwdg.de

CNMPB – Center for Nanoscale Microscopy and Molecular Physiology of the Brain Cluster of Excellence 171 – DFG Research Center 103
Dr. Heike Conrad
Scientific Coordination / Press & Public Relations
Humboldtallee 23, 37073 Göttingen
Telefon 0551 / 39-7065, heike.benecke@med.uni-goettingen.de

Weitere Informationen:

http://RMATION:
http://www.rizzoli-lab.de - research group of Prof. Rizzoli
http://www.cnmpb.de – DFG Research Center and Cluster of
http://Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) -
http://www.sciencemag.org/content/344/6187/1023/suppl/DC1 - video animation

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

Further reports about: Brain CNMPB DFG Microscopy Physiology Synapse proteins synaptic vesicles

More articles from Life Sciences:

nachricht Desert ants cannot be fooled
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>