Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First 3D Model of a Synapse


A glance into a new world for neuroscience: research team from Göttingen led by Prof. Dr. Silvio O. Rizzoli present the first scientifically accurate 3D model of a synapse. Published May 30th 2014 in SCIENCE.

Synapses are the contacts between nerve cells that allow the flow of information that makes our brains work. However, the molecular architecture of these highly complex structures has been unknown until now. A research team from Göttingen, led by Prof. Silvio O. Rizzoli from the DFG Research Center and Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) of the University Medical Center Göttingen, managed to determine the copy numbers and positions of all important building blocks of a synapse for the first time.

The first 3D model of a synapse. The reconstruction shows a synapse in cross section. The small spheres are synaptic vesicles. The model shows 60 different proteins, which sum to more than 300,000 copies of a single protein in the synapse.

Burkhard Rammner

This allowed them to reconstruct the first scientifically accurate 3D model of a synapse. This effort has been made possible only by a collaboration of specialists in electron microscopy, super-resolution light microscopy (STED), mass spectrometry, and quantitative biochemistry from the UMG, the Max Planck Institute for Biophysical Chemistry, Göttingen, and the Leibniz Institute for Molecular Pharmacology, Berlin.

The project was funded by the European Research Council (ERC) and the Deutsche Forschungsgemeinschaft (DFG). The results have been published in the renowned scientific journal SCIENCE on May 30th 2014. Highlighting the impact of this work, the presented model has been selected as the cover of the respective issue of the SCIENCE journal.

Original publication:
Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B, Koo SJ, Claßen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. SCIENCE, May 30th, 2014. 344(6187): 1023-1028. DOI: 10.1126/science.1252884.

A New and Undiscovered Land in Neuroscience
“This 3D model of a synapse opens a new world for neuroscientists,” says Prof. Rizzoli, senior author of the publication. Particularly the abundance and distribution of the building blocks have long been terra incognita, an undiscovered land. The model presented by Prof. Rizzoli and his team now shows several hundreds of thousands of individual proteins in correct copy numbers and at their exact localisation within the nerve cell.

“The new model shows, for the first time, that widely different numbers of proteins are needed for the different processes occurring in the synapse,” says Dr. Benjamin G. Wilhelm, first author of the publication. The new findings reveal: proteins involved in the release of messenger substances (neurotransmitters) from so called synaptic vesicles are present in up to 26,000 copies per synapse. Proteins involved in the opposite process, the recycling of synaptic vesicles, on the other hand, are present in only 1,000-4,000 copies per synapse.

These details help to solve a long-lasting controversy in neuroscience: how many synaptic vesicles within the synapse can be used simultaneously? Apparently, more than enough proteins are present to ensure vesicle release, but the proteins for vesicle recycling are sufficient for only 7-11% of all vesicles in the synapse. This means that the majority of vesicles in the synapse cannot be used simultaneously.

The most important insight the new model reveals, is however that the copy numbers of proteins involved in the same process scale to an astonishingly high degree. The building blocks of the cell are tightly coordinated to fit together in number, comparable to a highly efficient machinery. This is a very surprising finding and it remains entirely unclear how the cell manages to coordinate the copy numbers of proteins involved in the same process so closely.

The new model will serve as a reference source for neuroscientists of all specialisations in the future, and will support future research, since the copy number of proteins can be an important indicator for their relevance. But the research team led by Prof. Rizzoli does not plan to stop there: “Our ultimate goal is to reconstruct an entire nerve cell”. Combined with functional studies on the interaction of individual proteins this would allow to simulate cellular function in the future – the creation of a “virtual cell”.
An impressive video animation has been created from the obtained data to visualise the structure and protein distribution of a synapse (

For his approach to study the molecular anatomy of nerve cells, Prof. Rizzoli has already been awarded an ERC Consolidator Grant 2013. "The findings of Prof. Rizzoli are spectacular", says Prof. Dr. Heyo Kroemer, Speaker of the UMG board and dean of the Faculty of Medicine. "This highly precise synaptic model will provide completely new possibilities for medical research. This is another example demonstrating that the University Medical Center Göttingen provides attractive conditions for international top-level research." Prof. Mathias Bähr, one of the CNMPB speakers, says “We are very excited that Prof. Rizzoli succeeded in accomplishing this project so fast. This study significantly advances our general understanding of the protein distribution within healthy nerve cells. In the future, these findings will contribute to identify anomalies in neuronal anatomy in neurodegenerative diseases, such as Parkinson’s disease.”

Prof. Dr. Silvio O. Rizzoli
Dept. Neuro- and Sensory Physiology, University Medical Center Göttingen European Neuroscience Institute (ENI) Göttingen
Grisebachstraße 5, 37077 Göttingen
Phone: +49 (0) 551 39-33630

CNMPB – Center for Nanoscale Microscopy and Molecular Physiology of the Brain Cluster of Excellence 171 – DFG Research Center 103
Dr. Heike Conrad
Scientific Coordination / Press & Public Relations
Humboldtallee 23, 37073 Göttingen
Telefon 0551 / 39-7065,

Weitere Informationen:

http://RMATION: - research group of Prof. Rizzoli – DFG Research Center and Cluster of
http://Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) - - video animation

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

Further reports about: Brain CNMPB DFG Microscopy Physiology Synapse proteins synaptic vesicles

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>