Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Fire Ants Build Waterproof Rafts

28.04.2011
It’s a naturally occurring phenomenon that has puzzled biologists for decades: Place a single fire ant in water and it will struggle. But a group of fire ants will bind together and float effortlessly for days.

Georgia Tech researchers – Nathan Mlot, mechanical engineering graduate student; Craig Tovey, professor of industrial and systems engineering; and David Hu, professor of mechanical engineering – have solved the mystery of how fire ants self-assemble into a waterproof raft.

Using time-lapse photography and mathematical modeling, the Georgia Tech team found that fire ants act collaboratively rather than individually to form a water-repellant, buoyant raft.

A paper describing the research, titled “Fire ants self-assemble into waterproof rafts to survive floods,” was published April 25 in the early edition of the journal Proceedings of the National Academy of Sciences.

“It’s a real thrill unraveling what at first looks like chaos,” Tovey said. “To understand what the individual behaviors are and how they combine in order to achieve the function of the group is the central puzzle one encounters when studying social insects.”

An individual ant’s exoskeleton is moderately hydrophobic. But fire ants enhance their water repellency by linking their bodies together, a process similar to the weaving of a waterproof fabric, researchers said.

By freezing the ants, the Georgia Tech team observed that fire ants construct rafts when placed in water by gripping each other with mandibles, claw and adhesive pads at a force 400 times their body weight.

The result is a viscous and elastic material that is almost like a fluid composed of ant “molecules,” researchers said. The ants spread out from a sphere into a pancake-shaped raft that resisted perturbations and submergence techniques.

To determine how this is possible, Tovey and the team tracked the ants’ travel and measured the raft’s dimensions. They found the ants move using a stereotyped sequence of behavior. The ants walk in straight lines, ricocheting off the edges of the raft and walking again until finally adhering to an edge, Tovey said. The ant raft is water repellent because of cooperative behavior.

The ant raft provides cohesion, buoyancy and water repellency to its passengers. Even more remarkable, it is self-assembled quickly, in less than 100 seconds. It is also self-healing, meaning if one ant is removed from the raft, others move in to fill the void.

“Self-assembly and self-healing are hallmarks of living organisms,” Hu said. “The ant raft demonstrates both these abilities, providing another example that an ant colony behaves like a super organism.”

The research could have application to logistics and operations research and material sciences, specifically the construction of man-made flotation devices. It also could impact the field of robotics, the team said.

“With the ants, we have a group of unintelligent units acting on a few behaviors that allow them to build complex structures and accomplish tasks,” Mlot said. “In autonomous robotics, that’s what is desired—to have robots follow a few simple rules for an end result.”

Liz Klipp | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>