Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Fire Ants Build Waterproof Rafts

28.04.2011
It’s a naturally occurring phenomenon that has puzzled biologists for decades: Place a single fire ant in water and it will struggle. But a group of fire ants will bind together and float effortlessly for days.

Georgia Tech researchers – Nathan Mlot, mechanical engineering graduate student; Craig Tovey, professor of industrial and systems engineering; and David Hu, professor of mechanical engineering – have solved the mystery of how fire ants self-assemble into a waterproof raft.

Using time-lapse photography and mathematical modeling, the Georgia Tech team found that fire ants act collaboratively rather than individually to form a water-repellant, buoyant raft.

A paper describing the research, titled “Fire ants self-assemble into waterproof rafts to survive floods,” was published April 25 in the early edition of the journal Proceedings of the National Academy of Sciences.

“It’s a real thrill unraveling what at first looks like chaos,” Tovey said. “To understand what the individual behaviors are and how they combine in order to achieve the function of the group is the central puzzle one encounters when studying social insects.”

An individual ant’s exoskeleton is moderately hydrophobic. But fire ants enhance their water repellency by linking their bodies together, a process similar to the weaving of a waterproof fabric, researchers said.

By freezing the ants, the Georgia Tech team observed that fire ants construct rafts when placed in water by gripping each other with mandibles, claw and adhesive pads at a force 400 times their body weight.

The result is a viscous and elastic material that is almost like a fluid composed of ant “molecules,” researchers said. The ants spread out from a sphere into a pancake-shaped raft that resisted perturbations and submergence techniques.

To determine how this is possible, Tovey and the team tracked the ants’ travel and measured the raft’s dimensions. They found the ants move using a stereotyped sequence of behavior. The ants walk in straight lines, ricocheting off the edges of the raft and walking again until finally adhering to an edge, Tovey said. The ant raft is water repellent because of cooperative behavior.

The ant raft provides cohesion, buoyancy and water repellency to its passengers. Even more remarkable, it is self-assembled quickly, in less than 100 seconds. It is also self-healing, meaning if one ant is removed from the raft, others move in to fill the void.

“Self-assembly and self-healing are hallmarks of living organisms,” Hu said. “The ant raft demonstrates both these abilities, providing another example that an ant colony behaves like a super organism.”

The research could have application to logistics and operations research and material sciences, specifically the construction of man-made flotation devices. It also could impact the field of robotics, the team said.

“With the ants, we have a group of unintelligent units acting on a few behaviors that allow them to build complex structures and accomplish tasks,” Mlot said. “In autonomous robotics, that’s what is desired—to have robots follow a few simple rules for an end result.”

Liz Klipp | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>