Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fipronil and imidacloprid reduce honeybee mitochondrial activity


New research published in Environmental Toxicology and Chemistry addresses the effects of two broad-spectrum systemic insecticides, fipornil and imidacloprid, on honeybees.

These insecticides are widely used in agriculture, and the authors conclude that fipronil and imidacloprid are inhibitors of mitochondrial bioenergetics, resulting in depleted cell energy. This action can explain the toxicity of these compounds for honeybees.

Scientists are urgently trying to determine the causes of colony collapse disorder and the alarming population declines of honeybees. The cross-pollination services they provide are required by approximately 80 percent of all flowering plants, and 1/3 of all agricultural food production directly depends on bee pollination. As a result, there has been a flurry of research on honeybee parasitic mite infestations, viral diseases, and the direct and indirect impacts of pesticides.

The effects of pyrazoles (e.g., fipronil) and neonicotinoids (e.g., imidacloprid) on the nervous system are fairly well documented. Daniel Nicodemo, professor of ecology and beekeeping at the Universidade Estadual Paulista in Dracena, Brazil, and lead author of the study states, "These insecticides affect the nervous system of pest and beneficial insects, often killing them.

Sublethal effects related to insect behavior have been described in other studies; even a few nanograms of active ingredient disturbed the sense of taste, olfactory learning and motor activity of the bees." A key characteristic of colony collapse disorder is the incapacity of the honeybees to return to their hives, and these disruptions have a direct impact on that ability.

In this study, Nicodemo et al. looked at the effects of fipronil and imidacloprid on the bioenergetics functioning of mitochondria isolated from the heads and thoraces of Africanized honeybees. Mitochondria are the power plants of a cell, generating most of a cell's supply of adenosine triphosphate (ATP), used as a source of chemical energy.

Honeybee flight muscles are strongly dependent on high levels of oxygen consumption and energy metabolism. Mitochondrial oxidative phosphorylation drives ATP synthesis, which is required to contract the muscles during flight. "If something goes wrong, the energy production is impaired," explains Nicodemo. "Similar to a plane, honeybees require clean fuel in order to fly."

Both fipronil and imidacloprid negatively affected the mitochondrial bioenergetics of the head and thorax of the honeybees. While at sublethal levels, insecticide damage may not be evident, even such low level exposure clearly contributes to the inability of a honeybee to forage and return to the hive, which could result in declining bee populations.

Jennifer Lynch | Eurek Alert!
Further information:

Further reports about: ATP Environmental Toxicology activity disorder honeybee insecticides mitochondrial muscles nervous

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>