Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fipronil and imidacloprid reduce honeybee mitochondrial activity

07.08.2014

New research published in Environmental Toxicology and Chemistry addresses the effects of two broad-spectrum systemic insecticides, fipornil and imidacloprid, on honeybees.

These insecticides are widely used in agriculture, and the authors conclude that fipronil and imidacloprid are inhibitors of mitochondrial bioenergetics, resulting in depleted cell energy. This action can explain the toxicity of these compounds for honeybees.

Scientists are urgently trying to determine the causes of colony collapse disorder and the alarming population declines of honeybees. The cross-pollination services they provide are required by approximately 80 percent of all flowering plants, and 1/3 of all agricultural food production directly depends on bee pollination. As a result, there has been a flurry of research on honeybee parasitic mite infestations, viral diseases, and the direct and indirect impacts of pesticides.

The effects of pyrazoles (e.g., fipronil) and neonicotinoids (e.g., imidacloprid) on the nervous system are fairly well documented. Daniel Nicodemo, professor of ecology and beekeeping at the Universidade Estadual Paulista in Dracena, Brazil, and lead author of the study states, "These insecticides affect the nervous system of pest and beneficial insects, often killing them.

Sublethal effects related to insect behavior have been described in other studies; even a few nanograms of active ingredient disturbed the sense of taste, olfactory learning and motor activity of the bees." A key characteristic of colony collapse disorder is the incapacity of the honeybees to return to their hives, and these disruptions have a direct impact on that ability.

In this study, Nicodemo et al. looked at the effects of fipronil and imidacloprid on the bioenergetics functioning of mitochondria isolated from the heads and thoraces of Africanized honeybees. Mitochondria are the power plants of a cell, generating most of a cell's supply of adenosine triphosphate (ATP), used as a source of chemical energy.

Honeybee flight muscles are strongly dependent on high levels of oxygen consumption and energy metabolism. Mitochondrial oxidative phosphorylation drives ATP synthesis, which is required to contract the muscles during flight. "If something goes wrong, the energy production is impaired," explains Nicodemo. "Similar to a plane, honeybees require clean fuel in order to fly."

Both fipronil and imidacloprid negatively affected the mitochondrial bioenergetics of the head and thorax of the honeybees. While at sublethal levels, insecticide damage may not be evident, even such low level exposure clearly contributes to the inability of a honeybee to forage and return to the hive, which could result in declining bee populations.

Jennifer Lynch | Eurek Alert!
Further information:
http://www.setac.org/

Further reports about: ATP Environmental Toxicology activity disorder honeybee insecticides mitochondrial muscles nervous

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>