Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finnish scientists discover nerve growth factor with therapeutic potential in Parkinson's disease

31.08.2009
Scientists in the Academy of Finland's Neuroscience Research Programme have reported promising new results with potential implications for the treatment of Parkinson's disease.

They have been studying the impacts of nerve growth factors in the treatment of PD, and their latest results show that a certain growth factor can be used to halt the progress of damage brought on by a nerve poison and possibly even restore the function of damaged cells.

The studies on nerve growth factors used an experimental PD model in rats. Administration of the growth factor reduced motor disturbances in rats.

The severe motor disturbances that are seen in PD are caused by the slow degeneration of dopamine nerves in the brain. There are treatments that alleviate the symptoms of the disease, such as hand tremor, but they do not prevent or halt the degeneration of nerve cells. The nerve growth factors studied to date have slowed nerve cell degeneration to some extent, but they have had only limited therapeutic effect. Several known nerve growth factors, such as GDNF, also attach to extracellular tissue, possibly deterring their movement to nerve cells that require treatment.

Working under the supervision of Academy Professor Mart Saarma, scientists at the University of Helsinki Institute of Biotechnology have now been investigating two new nerve growth factors. MANF (mesencephalic astrocyte-derived neurotrophic factor) is released from glial cells in the midbrain and is a member of the same growth factor family as CDNF, another growth factor that Saarma's team have investigated. A University of Helsinki team led by Professor Raimo K. Tuominen discovered that in the experimental PD model, MANF and CDNF injections into the brain prevented dopamine nerve destruction caused by nerve poison and to some extent even restored the function of damaged cells in rats.

The latest results suggest that MANF spreads more readily in brain tissue than other known growth factors. This may be a highly significant finding in respect to the development of growth factor therapy for PD.

The results are published in the 29 July issue of the Journal of Neuroscience

Professor Mart Saarma | EurekAlert!
Further information:
http://www.helsinki.fi

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>