Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprint analysis technique could be used to identify bombmakers

27.08.2008
University of Leicester experts have held discussions with military personnel in Afghanistan following the discovery of new technology to identify fingerprints on metal.

Dr John Bond, a forensic research scientist at the University of Leicester and scientific support manager at Northamptonshire Police, has worked with a team from the University Department of Chemistry to develop the novel technique.

The state-of-the-art forensic method that can identify fingerprints on bullets could now be used on bombs. The new techniques can pick up fingerprints on metal even after they have been wiped off.

After the research was published earlier this year, Dr Bond has been approached by military personnel in Afghanistan to discuss potential use of the technique.

Dr Bond is investigating whether the technique can be used to find prints on roadside bombs. It would mean recovered fragments of bombs could be tested for prints put on it while it was manufactured.

Dr Bond said " We have developed a method that enables us to ‘visualise fingerprints’ even after the print itself has been removed. We conducted a study into the way fingerprints can corrode metal surfaces. The technique can enhance – after firing– a fingerprint that has been deposited on a small calibre metal cartridge case before it is fired.

“For the first time we can get prints from people who handled a cartridge before it was fired. Wiping it down, washing it in hot soapy water makes no difference - and the heat of the shot helps the process we use.

“The procedure works by applying an electric charge to a metal - say a gun or bullet - which has been coated in a fine conducting powder, similar to that used in photocopiers.

“Even if the fingerprint has been washed off, it leaves a slight corrosion on the metal and this attracts the powder when the charge is applied, so showing up a residual fingerprint.

“The technique works on everything from bullet casings to machine guns. Even if heat vaporises normal clues, police will be able to prove who handled a particular gun.”

Dr Bond said they had found the method worked well on certain metals including brass which is often used for bullet casings.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>