Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finger-trap tension stabilizes cells' chromosome-separating machinery

25.11.2010
Accurate gene distribution during cell division depends on stable set-up

Scientists have discovered an amazingly simple way that cells stabilize their machinery for forcing apart chromosomes. Their findings are reported Nov. 25 in Nature.

When a cell gets ready to split into new cells, this stable set-up permits its genetic material to be separated and distributed accurately. Otherwise, problem cells – like cancer cells— arise.

The human body contains more than a trillion cells, and every single cell needs to have the exact same set of chromosomes. Mistakes in moving chromosomes during cell division can lead to babies being born with genetic conditions like Down syndrome, where cells have an extra copy of chromosome 21.

"A striking hallmark of cancer cells," said one of the senior authors of the study, Sue Biggins, an investigator in the Basic Science Division, Fred Hutchinson Cancer Research Center in Seattle, "is that they contain the wrong number of chromosomes, so it is essential that that we understand how chromosome separation is controlled. This knowledge would potentially lead to ways to correct defects before they occur, or allow us to try to target cells with the wrong number of chromosomes to prevent them from dividing again."

The machine inside cells that moves the chromosomes is the kinetochore.

These appear on the chromosomes and attach to dynamic filaments during cell division. Kinetochores drive chromosome movement by keeping a grip on the filaments, which are constantly remodeling. The growth and shortening of the filaments tugs on the kinetochores and chromosomes until they separate.

"The kinetochore is one of the largest cellular machines but had never been isolated before," Biggins said, "Our labs isolated these machines for the first time. This allowed us to analyze their behavior outside of the cell and find out how they control movement."

"We demonstrated that attachments between kinetochores and microtubule filaments become more stable when they are placed under tension," noted Dr. Charles "Chip" Asbury, a University of Washington (UW) associate professor of physiology and biophysics. Originally trained in mechanical engineering, Asbury studies molecular motors in cells. He is also a senior author on the Nov. 25 Nature paper.

Asbury likened the stabilizing tension on the filament to a Chinese finger trap toy – the harder you try to pull away, the stronger your knuckles are gripped.

Asbury explained how this tension-dependent stabilization helps chromosomes separate according to plan. As cell division approaches, a mitotic spindle forms, so named by 19th century scientists because the gathering microfilaments resemble a wheel spinning thread.

When chromosome pairs are properly connected to the spindle, with one attached to microtubules on the right and the other to microtubules on the left, the kinetochore comes under mechanical tension and the attachment becomes stabilized, sort of like steadying a load by tightening ropes on either side. This is a simple, primitive mechanism.

"On the other hand," Asbury said," if the chromosome pair is not properly attached, the kinetochores do not come under full tension. The attachments are unstable and release quickly, giving another chance for proper connections to form." Kinetochores are not just connectors, but also are regulatory hubs. They sense and fix errors in attachment. They emit "wait" signals until the microtubule filaments are in the right place.

The research team conducted this study using techniques to manipulate single molecules to see how they worked. These methods allow scientists to take measurements not possible in living cells. The native kinetochore particles were purified from budding yeast cells.

To the best of his knowledge, Asbury said, "Intact, functional kinetochores had not previously been isolated from any organism." The purification of the kinetochores allowed the research team to make the first direct measurements of coupling strength between individual kinetechore particles and dynamic microtubules.

The results of this study contribute to wider efforts to understand a puzzling phenomenon on which all life depends: How are motion and force produced to move duplicated chromosomes apart before cells divide?

The research was funded by grants from the National Institute of General Science at the National Institutes of Health, the National Science Foundation, the Packard Foundation, the Kinship Foundation and the Beckman Foundation.

In addition to senior authors Biggins and Asbury, the lead authors on this study are Bungo Akiyoshi, from the Molecular and Cellular Biology Program at the UW and the Division of Basic Sciences, Fred Hutchinson Cancer Research Center; and Krishna K, Sarangapani and Andrew F. Powers, both of the UW Department of Physiology & Biophysics. The research team included Christian R. Nelson, Fred Hutchinson Cancer Research Center; Steve L. Reichow, UW Department of Biochemistry; Hugo Arellano-Santoyo, Fred Hutchinson Cancer Research Center, UW Molecular and Cellular Biology Program, and UW Department of Physiology & Biophysics; Tamir Gonen of the UW Department of Biochemistry and the Howard Hughes Medical Institute; and Jeffrey N. Ranish of the Institute for Systems Biology in Seattle.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>