Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finger (mal)formation reveals surprise function of desert DNA

24.11.2011
Explaining the diversity of leg shapes in the animal kingdom and hereditary defects in finger formation

Scientists from the EPFL and the University of Geneva have discovered a genetic mechanism that defines the shape of our members in which, surprisingly, genes play only a secondary role. The research published in Cell, online the 23rd of November, shows the mechanism is found in a DNA sequence that was thought, incorrectly, to play no role.

This long string has seven enhancers which, when combined with one another, modulate the activity of the genes responsible for the formation of the fingers – an important fundamental discovery for the field of genetics. The discovery could notably help better understand anomalies that are transmitted from generation to generation such as welded fingers or extra or abnormally short fingers (Kantaputra syndrome) even if the genes appear perfectly normal.

Turbos on the genome

DNA is composed of only about 2% genes. But it has other types of sequences, such as enhancers that increase the activity of certain genes at key moments. "The discovery we have made is that the group of genes involved in finger growth is modulated by seven enhancers, not just one, and they combine through contact," says Thomas Montavon, lead author of the article and researcher at the EPFL.

When the fingers in the embryo begin to take shape, the string of DNA folds and the enhancers, located on different parts of the string, come into contact. They then bring together various proteins that stimulate the activity of the genes, and the fingers start to grow. If one of these seven enhancers is missing, the fingers will be shorter, or abnormally shaped. When two are missing, the defects are even more pronounced. Without enhancers, the genes work slowly, and generate only the beginnings of fingers.

How does the DNA fold in exactly the right way so that the enhancers will correctly do their job? The recently discovered process remains largely unexplained. "In other tissues, such as the brain, the string of DNA folds differently," says Denis Duboule, director of the study and researcher at both the EPFL and the University of Geneva. "To our knowledge, it is only in the fingers that it adopts this shape."

An explanation for evolutionary diversity

Statistically, the seven enhancers involved in finger growth create seven opportunities for a mutation to occur. The flexibility of this mechanism, with no known equivalent to date, causes not only hereditary malformations, but also the many variations in the hands, legs and other appendages in nature. "Just think of some ungulates, which walk on a single finger, or the ostrich, which has only two, and the human hand, of course" explains Denis Duboule.

Other genetic processes may also function on the basis of a similar principle. This could explain the diversity of the products of evolution, in areas other than the fingers, according to Denis Duboule. "When a mutation occurs on a gene, for instance in cystic fibrosis, it is often binary. This amounts to an 'all or nothing' situation. With the mechanism we have discovered, it is a 'more or less' situation. It is combined, it is modulated."

This research is carried out within the National Center of Competence in Research (NCCR) Frontiers in Genetics. The NCCRs are an initiative of the Swiss government to stimulate research and education in key areas. http://www.frontiers-in-genetics.org

Vidéo (interview with Denis Duboule) : http://www.youtube.com/watch?v=jrFG34HPqN8

Contacts:

Denis Duboule denis.duboule@epfl.ch or 41-21-693-83-38

Thomas Montavon thomas.montavon@epfl.ch or 41-21-693-06-05

Lionel Pousaz, EPFL Media & Communications, lionel.pousaz@epfl.ch
or 41-79-559-71-61

Lionel Pousaz | EurekAlert!
Further information:
http://www.epfl.ch

Further reports about: DNA DNA sequence Kantaputra syndrome NCCR desert DNA formation of the fingers

More articles from Life Sciences:

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

nachricht German scientists question study about plastic-eating caterpillars
15.09.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>