Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fine-tuning for intestinal immune cells

17.05.2016

An international team of researchers under the leadership of the LIMES Institute and the excellence cluster ImmunoSensation of the University of Bonn unraveled a new regulatory mechanism how food components and environmental factors influence the immune system. Various substances present in the intestines can bind to an important controller, the Ah receptor. This system is in turn regulated by the Ah receptor repressor and as a result, it influences the degree of the immune response. If the controller is not properly adjusted during bacterial infections, there can be life-threatening septic shock, for example. The results are now being published in the journal “Scientific Reports".

The intestines’ primary role is digestion but they must also achieve high performance around the clock defending against pathogens and environmental pollutants. This is because everything taken up with food ultimately ends up in the digestive tract.


Decoded the mode of operation of an important controller for immune response: Jessica Koenig, Dr. Julia Vorac, associate professor Dr. Heike Weighardt, Prof. Dr. Irmgard Foerster and Oliver Schanz.

© Photo: Volker Lannert/University of Bonn

“The intestines assume an important barrier function so that, to the greatest extent possible, no harmful organisms and substances are able to overcome this bastion,” says Prof. Dr. Irmgard Foerster, who is researching the connection between immunology and the environment at the Life and Medical Sciences (LIMES) Institute and in the excellence cluster ImmunoSensation of the University of Bonn.

The immune system in the intestines must be continually rebalanced. If its response is weak, pathogens and noxious substances have an easy job. If the immune reaction is excessive, there can be harmful inflammation – for example, colitis – to the point of life-threatening septic shock.

The “Ah receptor” (aryl hydrocarbon receptor) plays an important role in this fine-tuning of the immune system in the intestines. A receptor is a protein onto which certain molecules latch – similarly to how a key fits into a lock. A large variety of substances can bind to the Ah receptor and thus trigger certain signal chains: aromatic hydrocarbons as they develop, for example, through the breakdown of food components, but also environmental toxins such as dioxins.

Ah receptor and its repressor control the immune response together

The Ah receptor has a counterpart: the Ah receptor repressor which partially inhibits the effect of the Ah receptor. “Together, both ensure that there is an appropriate immune response,” says Dr. Heike Weighardt from Prof. Foerster’s team. Up to now, it was largely unknown how the Ah receptor repressor worked.

Together with scientists from the IUF Leibniz Research Institute for Environmental Medicine in Duesseldorf and the Waseda University in Tokyo (Japan), the researchers at the LIMES Institute and the excellence cluster ImmunoSensation of the University of Bonn have now researched how the interaction of the Ah receptor and its repressor works.

Using a mouse model, the team of scientists replaced the gene for the Ah receptor repressor with one for a protein which fluoresces green. “Whenever the gene for the Ah receptor repressor is to actually become active, the fluorescing protein glows,” says Oliver Schanz from the University of Bonn, one of the lead authors of the study.

It was demonstrated that the repressor in the intestinal immune cells is always particularly active when the Ah receptor is also operating at full speed. “Our data show that for a balanced immune response, both counterparts are necessary,” says Prof. Foerster.

The Ah receptor repressor increases the risk of septic shock

If the immune system mounts an excessive response, this can result in impending life-threatening septic shock through cardiovascular failure and organ damage. The team of researchers mutated the gene in mice for the Ah receptor repressor and the animals were then protected from such a hazardous shock.

By contrast, a malfunction of the Ah receptor repressor as well as of the Ah receptor itself led to increased sensitivity for chronic bowel inflammation. Both antagonists affect the production of immunostimulating substances, which include, for example, interleukin-1 beta or interferon gamma. “There is an appropriate immune response only if the Ah receptor and the Ah receptor repressor are in balance,” Dr. Weighardt concludes from these findings.

According to the scientists, the study shows that food can have a significant influence on the immune system. When vegetables – such as broccoli, for example – contain many substances which bind to the Ah receptor and thus activate the associated repressor, this may stabilize the immune system in the intestines. “The degree to which the results investigated in a model approach in animals can be transferred to humans must still be researched further,” says Prof. Foerster.

Publication: Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor, Scientific Reports, DOI: 10.1038/srep26091

Media contact information:

Prof. Dr. Irmgard Foerster
Immunology and Environment
LIMES Institute
ImmunoSensation Excellence Cluster
University of Bonn
Tel. ++49-(0)228-7362780 or 7362789
E-Mail: irmgard.foerster@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>