Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fine-tuning for intestinal immune cells

17.05.2016

An international team of researchers under the leadership of the LIMES Institute and the excellence cluster ImmunoSensation of the University of Bonn unraveled a new regulatory mechanism how food components and environmental factors influence the immune system. Various substances present in the intestines can bind to an important controller, the Ah receptor. This system is in turn regulated by the Ah receptor repressor and as a result, it influences the degree of the immune response. If the controller is not properly adjusted during bacterial infections, there can be life-threatening septic shock, for example. The results are now being published in the journal “Scientific Reports".

The intestines’ primary role is digestion but they must also achieve high performance around the clock defending against pathogens and environmental pollutants. This is because everything taken up with food ultimately ends up in the digestive tract.


Decoded the mode of operation of an important controller for immune response: Jessica Koenig, Dr. Julia Vorac, associate professor Dr. Heike Weighardt, Prof. Dr. Irmgard Foerster and Oliver Schanz.

© Photo: Volker Lannert/University of Bonn

“The intestines assume an important barrier function so that, to the greatest extent possible, no harmful organisms and substances are able to overcome this bastion,” says Prof. Dr. Irmgard Foerster, who is researching the connection between immunology and the environment at the Life and Medical Sciences (LIMES) Institute and in the excellence cluster ImmunoSensation of the University of Bonn.

The immune system in the intestines must be continually rebalanced. If its response is weak, pathogens and noxious substances have an easy job. If the immune reaction is excessive, there can be harmful inflammation – for example, colitis – to the point of life-threatening septic shock.

The “Ah receptor” (aryl hydrocarbon receptor) plays an important role in this fine-tuning of the immune system in the intestines. A receptor is a protein onto which certain molecules latch – similarly to how a key fits into a lock. A large variety of substances can bind to the Ah receptor and thus trigger certain signal chains: aromatic hydrocarbons as they develop, for example, through the breakdown of food components, but also environmental toxins such as dioxins.

Ah receptor and its repressor control the immune response together

The Ah receptor has a counterpart: the Ah receptor repressor which partially inhibits the effect of the Ah receptor. “Together, both ensure that there is an appropriate immune response,” says Dr. Heike Weighardt from Prof. Foerster’s team. Up to now, it was largely unknown how the Ah receptor repressor worked.

Together with scientists from the IUF Leibniz Research Institute for Environmental Medicine in Duesseldorf and the Waseda University in Tokyo (Japan), the researchers at the LIMES Institute and the excellence cluster ImmunoSensation of the University of Bonn have now researched how the interaction of the Ah receptor and its repressor works.

Using a mouse model, the team of scientists replaced the gene for the Ah receptor repressor with one for a protein which fluoresces green. “Whenever the gene for the Ah receptor repressor is to actually become active, the fluorescing protein glows,” says Oliver Schanz from the University of Bonn, one of the lead authors of the study.

It was demonstrated that the repressor in the intestinal immune cells is always particularly active when the Ah receptor is also operating at full speed. “Our data show that for a balanced immune response, both counterparts are necessary,” says Prof. Foerster.

The Ah receptor repressor increases the risk of septic shock

If the immune system mounts an excessive response, this can result in impending life-threatening septic shock through cardiovascular failure and organ damage. The team of researchers mutated the gene in mice for the Ah receptor repressor and the animals were then protected from such a hazardous shock.

By contrast, a malfunction of the Ah receptor repressor as well as of the Ah receptor itself led to increased sensitivity for chronic bowel inflammation. Both antagonists affect the production of immunostimulating substances, which include, for example, interleukin-1 beta or interferon gamma. “There is an appropriate immune response only if the Ah receptor and the Ah receptor repressor are in balance,” Dr. Weighardt concludes from these findings.

According to the scientists, the study shows that food can have a significant influence on the immune system. When vegetables – such as broccoli, for example – contain many substances which bind to the Ah receptor and thus activate the associated repressor, this may stabilize the immune system in the intestines. “The degree to which the results investigated in a model approach in animals can be transferred to humans must still be researched further,” says Prof. Foerster.

Publication: Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor, Scientific Reports, DOI: 10.1038/srep26091

Media contact information:

Prof. Dr. Irmgard Foerster
Immunology and Environment
LIMES Institute
ImmunoSensation Excellence Cluster
University of Bonn
Tel. ++49-(0)228-7362780 or 7362789
E-Mail: irmgard.foerster@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>