Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fine-scale analysis of the human brain yields insight into its distinctive composition

13.04.2012
Study published in Cell by Allen Institute for Brain Science examines cellular and molecular organization of human and mouse brain

Scientists at the Allen Institute for Brain Science have identified similarities and differences among regions of the human brain, among the brains of human individuals, and between humans and mice by analyzing the expression of approximately 1,000 genes in the brain.

The study, published online today in the journal Cell, sheds light on the human brain in general and also serves as an introduction to what the associated publicly available dataset can offer the scientific community.

This study reveals a high degree of similarity among human individuals. Only 5% of the nearly 1,000 genes surveyed in three particular regions show differences in expression between humans. In addition, comparison of this dataset to data in the Allen Mouse Brain Atlas indicates great consistency between humans and mice, as the human visual cortex appears to share 79% of its gene expression with that of the mouse.

The dataset, which is publicly available online via the Allen Brain Atlas data portal (www.brain-map.org) as part of the Allen Human Brain Atlas, holds promise for spurring further discoveries across the research community. Specifically, it contains detailed, cellular-level in situ hybridization gene expression data for about 1,000 genes, selected for their involvement in disease or neural function, in two distinct cortical areas of several disease-free adult human brains, both male and female.

Genes analyzed in this study fall into three categories: genes that serve as indicators of cell types found in the cortex, genes that are related to particular neural functions or diseases of the central nervous system, and genes that hold value for understanding the neural evolution of different species.

Human brain

The analysis published today reveals high consistency of gene expression among different regions of the human cortex—the outer rind of the mammalian brain responsible for sophisticated information processing—specifically the temporal and visual cortices. The vast majority of genes expressed in these areas, 84%, demonstrate consistent expression patterns between cortical areas. This finding supports the hypothesis that there are common principles of organization and function that apply throughout the cortex, and therefore studying one area in great detail—the visual cortex, for example—may hold promise for uncovering fundamentals about how the whole brain works. The study also illustrates widespread conservation of gene expression among human individuals. The study reports that of the genes analyzed, only 46 (5%) showed variation in expression among individual, disease-free human brains in the cortical areas examined.

Distinctions among species

Several findings in the study point to differences and similarities between humans and mice. As the mouse is the most common model for the study of human brain function and diseases, it is crucial to understand how well it represents the human system and where its accuracy may be limited. Overall, the results of this study indicate good conservation of gene expression between the two species. While the majority of gene expression is similar, the authors of the study report some striking differences.

The findings reveal distinct molecular markers specific to each species. Tracing those genes attributable to particular cell types—the building blocks of brain circuits—the study authors point to a unique molecular signature for each cortical cell type. These molecular signatures may reflect and contribute to species-specific functions.

According to the study, only 21% of gene expression in the visual cortex exhibited differences between human and mouse, but the nature of those differences may reveal more about what makes us uniquely human. While very little variation among genes in the disease and evolution categories was observed, substantial variation was reported among genes in the cell types category, with a marked number of those genes known to be involved in cell-to-cell communication. These data suggest that intercellular communication may be a key link to unique brain function in humans.

Advancing the field

To date, other studies examining human gene expression have employed either a segmented region of the brain or a select set of genes without specific anatomic information. This human brain dataset as well as the Allen Mouse Brain Atlas and the hundreds of studies published using its data demonstrate that adding high-resolution, cellular-level spatial information to gene expression profiling studies allows scientists to learn a great deal more about how genes contribute to cell types, neural circuits, and ultimately brain function.

The study published today offers a deep introduction to the kinds of information that can be mined from this dataset and the types of hypotheses that it can be used to test. The entire body of data is incorporated into the Allen Human Brain Atlas and is freely available via the Allen Brain Atlas data portal at www.brain-map.org.

Citation: Zeng et al., Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures. Cell (2012) doi: 10.1016/j.cell.2012.02.052

About the Allen Institute for Brain Science

The Allen Institute for Brain Science (www.alleninstitute.org) is an independent, 501(c)(3) nonprofit medical research organization dedicated to accelerating understanding of the human brain by fueling discovery for the broader scientific community. Through a product-focused approach, the Allen Institute generates innovative public resources used by researchers and organizations around the globe. Additionally, the Institute drives technological and analytical advances, thereby creating new knowledge and providing new ways to address questions about the brain in health and disease. Started with $100 million in seed money from philanthropist Paul G. Allen, the Institute is supported by a diversity of public and private funds. The Allen Institute's data and tools are publicly available online at www.brain-map.org.

Steven Cooper | EurekAlert!
Further information:
http://www.alleninstitute.org
http://www.brain-map.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>