Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings suggest new cause, possible treatment for multiple sclerosis

24.11.2010
Researchers have found evidence that an environmental pollutant may play an important role in causing multiple sclerosis and that a hypertension drug might be used to treat the disease.

The toxin acrolein was elevated by about 60 percent in the spinal cord tissues of mice with a disease similar to multiple sclerosis, said Riyi Shi, a medical doctor and a professor of neuroscience and biomedical engineering in Purdue University's Department of Basic Medical Sciences, School of Veterinary Medicine, Center for Paralysis Research and Weldon School of Biomedical Engineering.

The research results represent the first concrete laboratory evidence for a link between acrolein (pronounced a-KRO-le-an) and multiple sclerosis, he said.

"Only recently have researchers started to understand the details about what acrolein does to the human body," Shi said. "We are studying its effects on the central nervous system, both in trauma and degenerative diseases such as multiple sclerosis."

The compound is an environmental toxin found in air pollutants including tobacco smoke and auto exhaust. Acrolein also is produced within the body after nerve cells are damaged. Previous studies by this research team found that neuronal death caused by acrolein can be prevented by administering the drug hydralazine, an FDA-approved medication used to treat hypertension.

The new findings show that hydralazine also delays onset of multiple sclerosis in mice and reduces the severity of symptoms by neutralizing acrolein.

"The treatment did not cause any serious side effects in the mice," Shi said. "The dosage we used for hydralazine in animals is several times lower than the standard dosing for oral hydralazine in human pediatric patients. Therefore, considering the effectiveness of hydralazine at binding acrolein at such low concentrations, we expect that our study will lead to the development of new neuroprotective therapies for MS that could be rapidly translated into the clinic."

The researchers also learned the specific chemical signature of the drug that binds to acrolein and neutralizes it, potentially making it possible to create synthetic alternatives with reduced side effects. The studies are detailed in a paper appearing online this month in the journal Neuroscience. The paper was written by doctoral students Gary Leung, Wenjing Sun and Lingxing Zheng; graduate research assistant Melissa Tully, who is an MD-Ph.D. student at Purdue and the Indiana University School of Medicine; postdoctoral researcher Sarah Brookes; and Shi.

In multiple sclerosis, the myelin insulation surrounding nerve cells is destroyed and the nerve fibers themselves are damaged.

"We think that acrolein is what degrades myelin, so if we can block that effect then we can delay the onset of MS and lessen the symptoms," Shi said.

Acrolein induces the production of free radicals, compounds that cause additional injury to tissues after disease or physical trauma.

"We've discovered that acrolein may play a very important role in free radical injury, particularly in multiple sclerosis," Shi said.

The elevated acrolein levels in the MS mice were cut in half when treated with hydralazine. The drug represents a potential long-term therapy to slow the disease's progress.

"To our knowledge, this is the first evidence that acrolein acts as a neurotoxin in MS and also the first time anyone has demonstrated hydralazine to be a neuroprotective drug," Shi said.

Other researchers had previously shown that acrolein damages liver cells and that the damage can be alleviated by hydralazine, leading the Purdue researchers to study its possible effects on spinal cord tissues.

Further research will be conducted, and Shi's group has identified other potential compounds for binding acrolein. The research team, in a possible future collaboration with the Indiana University School of Medicine, also is working to improve the sensitivity of detection methods to measure acrolein levels in people with multiple sclerosis.

A publication-quality image is available at http://news.uns.purdue.edu/images/2010/shi-acrolein.jpg

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2010/101123ShiAcrolein.html

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>