Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings suggest new cause, possible treatment for multiple sclerosis

24.11.2010
Researchers have found evidence that an environmental pollutant may play an important role in causing multiple sclerosis and that a hypertension drug might be used to treat the disease.

The toxin acrolein was elevated by about 60 percent in the spinal cord tissues of mice with a disease similar to multiple sclerosis, said Riyi Shi, a medical doctor and a professor of neuroscience and biomedical engineering in Purdue University's Department of Basic Medical Sciences, School of Veterinary Medicine, Center for Paralysis Research and Weldon School of Biomedical Engineering.

The research results represent the first concrete laboratory evidence for a link between acrolein (pronounced a-KRO-le-an) and multiple sclerosis, he said.

"Only recently have researchers started to understand the details about what acrolein does to the human body," Shi said. "We are studying its effects on the central nervous system, both in trauma and degenerative diseases such as multiple sclerosis."

The compound is an environmental toxin found in air pollutants including tobacco smoke and auto exhaust. Acrolein also is produced within the body after nerve cells are damaged. Previous studies by this research team found that neuronal death caused by acrolein can be prevented by administering the drug hydralazine, an FDA-approved medication used to treat hypertension.

The new findings show that hydralazine also delays onset of multiple sclerosis in mice and reduces the severity of symptoms by neutralizing acrolein.

"The treatment did not cause any serious side effects in the mice," Shi said. "The dosage we used for hydralazine in animals is several times lower than the standard dosing for oral hydralazine in human pediatric patients. Therefore, considering the effectiveness of hydralazine at binding acrolein at such low concentrations, we expect that our study will lead to the development of new neuroprotective therapies for MS that could be rapidly translated into the clinic."

The researchers also learned the specific chemical signature of the drug that binds to acrolein and neutralizes it, potentially making it possible to create synthetic alternatives with reduced side effects. The studies are detailed in a paper appearing online this month in the journal Neuroscience. The paper was written by doctoral students Gary Leung, Wenjing Sun and Lingxing Zheng; graduate research assistant Melissa Tully, who is an MD-Ph.D. student at Purdue and the Indiana University School of Medicine; postdoctoral researcher Sarah Brookes; and Shi.

In multiple sclerosis, the myelin insulation surrounding nerve cells is destroyed and the nerve fibers themselves are damaged.

"We think that acrolein is what degrades myelin, so if we can block that effect then we can delay the onset of MS and lessen the symptoms," Shi said.

Acrolein induces the production of free radicals, compounds that cause additional injury to tissues after disease or physical trauma.

"We've discovered that acrolein may play a very important role in free radical injury, particularly in multiple sclerosis," Shi said.

The elevated acrolein levels in the MS mice were cut in half when treated with hydralazine. The drug represents a potential long-term therapy to slow the disease's progress.

"To our knowledge, this is the first evidence that acrolein acts as a neurotoxin in MS and also the first time anyone has demonstrated hydralazine to be a neuroprotective drug," Shi said.

Other researchers had previously shown that acrolein damages liver cells and that the damage can be alleviated by hydralazine, leading the Purdue researchers to study its possible effects on spinal cord tissues.

Further research will be conducted, and Shi's group has identified other potential compounds for binding acrolein. The research team, in a possible future collaboration with the Indiana University School of Medicine, also is working to improve the sensitivity of detection methods to measure acrolein levels in people with multiple sclerosis.

A publication-quality image is available at http://news.uns.purdue.edu/images/2010/shi-acrolein.jpg

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2010/101123ShiAcrolein.html

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>