Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings on Multiple Sclerosis - Immune Cells Also Attack Neurons Directly

24.09.2010
Researchers in Germany have gained new insight into how the immune system causes damage associated with multiple sclerosis (MS), an incurable neuroinflammatory disorder.

Using imaging tools which enable investigation of processes in living organisms, Dr. Volker Siffrin and Professor Dr. Frauke Zipp (formerly Max Delbrück Center, MDC, Berlin-Buch, now University Medical Center Johannes Gutenberg University, Mainz) were able to show a direct interaction between immune cells and neurons which plays a significant role in neuronal injury. However, this direct interaction may respond to therapeutic intervention (Immunity, DOI 10.1016/j.immuni.2010.08.018)*.


Immune cells (red) attack nerve cells of mice. This leads to lethally elevated calcium levels within the neurons. (Photo: Dr. Volker Siffrin/Copyright: MDC)

Multiple sclerosis is an autoimmune disease in which a person’s own immune system attacks the central nervous system. Symptoms of the disease are variable depending on which nerves are affected, but often include muscle weakness, walking difficulties, numbness and visual disturbances. Research has shown that MS is caused by damage to the protective myelin sheath, an insulating substance that surrounds nerve processes and is critical for transmission of nerve impulses.

Research has also indicated that direct damage to neurons is prominent in early disease stages. “The contribution of direct neuronal damage to MS pathology has been debated since the first description of the disease,” explained Professor Frauke Zipp, senior author of the study. “Although many different theories about possible underlying mechanisms have been proposed – such as neuron damage being a secondary effect of the disrupted myelin sheath – actual events leading to neural damage are not well understood.”

To investigate processes in the living organisms, Dr. Zipp and her colleagues used two-photon laser scanning microscopy (TPLSM), with which they studied the role immune cells play in neuronal damage in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. They observed direct synapse-like interactions between immune cells and neurons.

Immune cells called Th17 cells, which have been linked to autoimmune inflammation, induced elevated calcium levels in the neurons, which in the long run are toxic to the cells. Normally, calcium within the neuron plays a crucial role in exciting nerve cells as well as muscle cells.

This is significant because fluctuations in neuronal intracellular calcium levels that are linked to cell injury are partially reversible when the researchers expose the lesions of the animals to compounds used to treat excitotoxicity.

These results highlight a specific interaction between the immune system and the nervous system, implicating direct neuronal damage in autoimmune-mediated inflammation. “Our use of in vivo imaging during disease has led to the characterization of neuronal dysfunction as early and potentially reversible, and suggests that immune-mediated disturbances of the neurons themselves contribute to multiple sclerosis, in addition to interruptions in nerve cell transmission as a result of changes to the myelin sheath,” Professor Zipp concluded.

“Furthermore, immune-mediated reversible calcium increases in neurons are a potential target for future therapeutics.” However, it will take many years to find out if this is a strategy which will work for treating MS.

*In vivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis

Volker Siffrin,1,2* Helena Radbruch,2,3* Robert Glumm,2,3 Raluca Niesner,2,3 Magdalena Paterka,2 Josephine Herz,2,3 Tina Leuenberger,2 Sabrina M. Lehmann, 4 Sarah Luenstedt,2,3 Jan Leo Rinnenthal,2 Gregor Laube,4 Hervé Luche,5 Seija Lehnardt,4 Hans-Joerg Fehling,5 Oliver Griesbeck,6 Frauke Zipp1,2

* equal contribution
1Neurology Department, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
2Max Delbrück Center for Molecular Medicine Berlin-Buch, 13125 Berlin, Germany
3Charité – University Medical Center Berlin, 10117 Berlin, Germany
4Institute of Cell Biology and Neurobiology, Charité - University Medicine Berlin, 10117 Berlin, Germany
5Institute of Immunology, University Clinics Ulm, Ulm, Germany
6Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
*Correspondence: frauke.zipp@unimedizin-mainz.de (F.Z.), siffrinv@gmx.de (V.S.)
A flash can be downloaded from the Internet at:
http://www.mdc-berlin.de/en/news/2010/20100921-new_findings_on_multiple_sclerosis_-_immun/index.html
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
Dr. Renée Dillinger-Reiter
Communication and Press
University Medical Center Mainz
Johannes Gutenberg University Mainz
Langenbeckstraße 1
55131 Mainz , Germany
Phone +49 (0) 6131 17-7428
Fax +49 (0) 6131 17-3496
e-mail: renee.dillinger-reiter@unimedizin-mainz.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.unimedizin-mainz.de

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>