Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings on Multiple Sclerosis - Immune Cells Also Attack Neurons Directly

24.09.2010
Researchers in Germany have gained new insight into how the immune system causes damage associated with multiple sclerosis (MS), an incurable neuroinflammatory disorder.

Using imaging tools which enable investigation of processes in living organisms, Dr. Volker Siffrin and Professor Dr. Frauke Zipp (formerly Max Delbrück Center, MDC, Berlin-Buch, now University Medical Center Johannes Gutenberg University, Mainz) were able to show a direct interaction between immune cells and neurons which plays a significant role in neuronal injury. However, this direct interaction may respond to therapeutic intervention (Immunity, DOI 10.1016/j.immuni.2010.08.018)*.


Immune cells (red) attack nerve cells of mice. This leads to lethally elevated calcium levels within the neurons. (Photo: Dr. Volker Siffrin/Copyright: MDC)

Multiple sclerosis is an autoimmune disease in which a person’s own immune system attacks the central nervous system. Symptoms of the disease are variable depending on which nerves are affected, but often include muscle weakness, walking difficulties, numbness and visual disturbances. Research has shown that MS is caused by damage to the protective myelin sheath, an insulating substance that surrounds nerve processes and is critical for transmission of nerve impulses.

Research has also indicated that direct damage to neurons is prominent in early disease stages. “The contribution of direct neuronal damage to MS pathology has been debated since the first description of the disease,” explained Professor Frauke Zipp, senior author of the study. “Although many different theories about possible underlying mechanisms have been proposed – such as neuron damage being a secondary effect of the disrupted myelin sheath – actual events leading to neural damage are not well understood.”

To investigate processes in the living organisms, Dr. Zipp and her colleagues used two-photon laser scanning microscopy (TPLSM), with which they studied the role immune cells play in neuronal damage in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. They observed direct synapse-like interactions between immune cells and neurons.

Immune cells called Th17 cells, which have been linked to autoimmune inflammation, induced elevated calcium levels in the neurons, which in the long run are toxic to the cells. Normally, calcium within the neuron plays a crucial role in exciting nerve cells as well as muscle cells.

This is significant because fluctuations in neuronal intracellular calcium levels that are linked to cell injury are partially reversible when the researchers expose the lesions of the animals to compounds used to treat excitotoxicity.

These results highlight a specific interaction between the immune system and the nervous system, implicating direct neuronal damage in autoimmune-mediated inflammation. “Our use of in vivo imaging during disease has led to the characterization of neuronal dysfunction as early and potentially reversible, and suggests that immune-mediated disturbances of the neurons themselves contribute to multiple sclerosis, in addition to interruptions in nerve cell transmission as a result of changes to the myelin sheath,” Professor Zipp concluded.

“Furthermore, immune-mediated reversible calcium increases in neurons are a potential target for future therapeutics.” However, it will take many years to find out if this is a strategy which will work for treating MS.

*In vivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis

Volker Siffrin,1,2* Helena Radbruch,2,3* Robert Glumm,2,3 Raluca Niesner,2,3 Magdalena Paterka,2 Josephine Herz,2,3 Tina Leuenberger,2 Sabrina M. Lehmann, 4 Sarah Luenstedt,2,3 Jan Leo Rinnenthal,2 Gregor Laube,4 Hervé Luche,5 Seija Lehnardt,4 Hans-Joerg Fehling,5 Oliver Griesbeck,6 Frauke Zipp1,2

* equal contribution
1Neurology Department, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
2Max Delbrück Center for Molecular Medicine Berlin-Buch, 13125 Berlin, Germany
3Charité – University Medical Center Berlin, 10117 Berlin, Germany
4Institute of Cell Biology and Neurobiology, Charité - University Medicine Berlin, 10117 Berlin, Germany
5Institute of Immunology, University Clinics Ulm, Ulm, Germany
6Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
*Correspondence: frauke.zipp@unimedizin-mainz.de (F.Z.), siffrinv@gmx.de (V.S.)
A flash can be downloaded from the Internet at:
http://www.mdc-berlin.de/en/news/2010/20100921-new_findings_on_multiple_sclerosis_-_immun/index.html
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
Dr. Renée Dillinger-Reiter
Communication and Press
University Medical Center Mainz
Johannes Gutenberg University Mainz
Langenbeckstraße 1
55131 Mainz , Germany
Phone +49 (0) 6131 17-7428
Fax +49 (0) 6131 17-3496
e-mail: renee.dillinger-reiter@unimedizin-mainz.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.unimedizin-mainz.de

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>