Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings on Multiple Sclerosis - Immune Cells Also Attack Neurons Directly

24.09.2010
Researchers in Germany have gained new insight into how the immune system causes damage associated with multiple sclerosis (MS), an incurable neuroinflammatory disorder.

Using imaging tools which enable investigation of processes in living organisms, Dr. Volker Siffrin and Professor Dr. Frauke Zipp (formerly Max Delbrück Center, MDC, Berlin-Buch, now University Medical Center Johannes Gutenberg University, Mainz) were able to show a direct interaction between immune cells and neurons which plays a significant role in neuronal injury. However, this direct interaction may respond to therapeutic intervention (Immunity, DOI 10.1016/j.immuni.2010.08.018)*.


Immune cells (red) attack nerve cells of mice. This leads to lethally elevated calcium levels within the neurons. (Photo: Dr. Volker Siffrin/Copyright: MDC)

Multiple sclerosis is an autoimmune disease in which a person’s own immune system attacks the central nervous system. Symptoms of the disease are variable depending on which nerves are affected, but often include muscle weakness, walking difficulties, numbness and visual disturbances. Research has shown that MS is caused by damage to the protective myelin sheath, an insulating substance that surrounds nerve processes and is critical for transmission of nerve impulses.

Research has also indicated that direct damage to neurons is prominent in early disease stages. “The contribution of direct neuronal damage to MS pathology has been debated since the first description of the disease,” explained Professor Frauke Zipp, senior author of the study. “Although many different theories about possible underlying mechanisms have been proposed – such as neuron damage being a secondary effect of the disrupted myelin sheath – actual events leading to neural damage are not well understood.”

To investigate processes in the living organisms, Dr. Zipp and her colleagues used two-photon laser scanning microscopy (TPLSM), with which they studied the role immune cells play in neuronal damage in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. They observed direct synapse-like interactions between immune cells and neurons.

Immune cells called Th17 cells, which have been linked to autoimmune inflammation, induced elevated calcium levels in the neurons, which in the long run are toxic to the cells. Normally, calcium within the neuron plays a crucial role in exciting nerve cells as well as muscle cells.

This is significant because fluctuations in neuronal intracellular calcium levels that are linked to cell injury are partially reversible when the researchers expose the lesions of the animals to compounds used to treat excitotoxicity.

These results highlight a specific interaction between the immune system and the nervous system, implicating direct neuronal damage in autoimmune-mediated inflammation. “Our use of in vivo imaging during disease has led to the characterization of neuronal dysfunction as early and potentially reversible, and suggests that immune-mediated disturbances of the neurons themselves contribute to multiple sclerosis, in addition to interruptions in nerve cell transmission as a result of changes to the myelin sheath,” Professor Zipp concluded.

“Furthermore, immune-mediated reversible calcium increases in neurons are a potential target for future therapeutics.” However, it will take many years to find out if this is a strategy which will work for treating MS.

*In vivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis

Volker Siffrin,1,2* Helena Radbruch,2,3* Robert Glumm,2,3 Raluca Niesner,2,3 Magdalena Paterka,2 Josephine Herz,2,3 Tina Leuenberger,2 Sabrina M. Lehmann, 4 Sarah Luenstedt,2,3 Jan Leo Rinnenthal,2 Gregor Laube,4 Hervé Luche,5 Seija Lehnardt,4 Hans-Joerg Fehling,5 Oliver Griesbeck,6 Frauke Zipp1,2

* equal contribution
1Neurology Department, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
2Max Delbrück Center for Molecular Medicine Berlin-Buch, 13125 Berlin, Germany
3Charité – University Medical Center Berlin, 10117 Berlin, Germany
4Institute of Cell Biology and Neurobiology, Charité - University Medicine Berlin, 10117 Berlin, Germany
5Institute of Immunology, University Clinics Ulm, Ulm, Germany
6Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
*Correspondence: frauke.zipp@unimedizin-mainz.de (F.Z.), siffrinv@gmx.de (V.S.)
A flash can be downloaded from the Internet at:
http://www.mdc-berlin.de/en/news/2010/20100921-new_findings_on_multiple_sclerosis_-_immun/index.html
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
Dr. Renée Dillinger-Reiter
Communication and Press
University Medical Center Mainz
Johannes Gutenberg University Mainz
Langenbeckstraße 1
55131 Mainz , Germany
Phone +49 (0) 6131 17-7428
Fax +49 (0) 6131 17-3496
e-mail: renee.dillinger-reiter@unimedizin-mainz.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.unimedizin-mainz.de

More articles from Life Sciences:

nachricht How cells hack their own genes
24.08.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>