Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings on Gene Regulation and Bone Development

02.11.2012
The patients have single short fingers (metacarpals) and toes (metatarsals) and can be restricted in growth due to a shortened skeleton. This hereditary disease is called brachydactyly type E (Greek for short fingers).

Three years ago Dr. Philipp G. Maass from the Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité and the Max Delbrück Center (MDC) in Berlin, has discovered an epigenetic mechanism, which, when dysregulated, causes this condition. Now, he and Dr. Sylvia Bähring were able to show how this regulator functions and influences the development of the bones and shed light on a new principle of gene regulation (JCI, doi: 10.1172/JCI65508)*.


The hand on the left X-ray is normal. The hand to the right shows shortened single bones in the fingers of a patient with brachydaktyly type E (see arrows). The shortened extremity is due to the translocation of the gene PTHLH from chromosome 12 to chromosome 4 followed by dysregulation of the gene PTHLH. The regulator CISTR-ACT with its long non-coding RNA (lncRNA) was disrupted by the translocation and supported the dysregulation.

(Graphics and X-rays: Philipp Maass/Copyright: ECRC)

The gene causing brachydactyly type E (BDE) is PTHLH (the abbreviation stands for parathyroid hormone like hormone), and belongs to a group of genes that regulate the development of cartilage and determine subsequent skeletal structure. The researchers investigated two families with BDE. The patients exhibit shortened metacarpals, involved in forming the hands and feet, but had no other clinical symptoms.

Up to now, more than ten different forms of brachydactyly are known. The features of the hands and feet are variable depending upon which type of brachydactyly a patient has. Sometimes, the brachydactyly can be associated with hypertension, mental retardation, or other medical problems.

Several new findings
The gene PTHLH is located on chromosome 12, one of the 46 chromosomes of the human genome. The gene exerts considerably influence on cartilage during development and early life. However, little was known about the regulation of this gene. Now, Dr. Maass, Dr. Bähring and Professor Luft have detected an epigenetic regulator for the gene PTHLH on chromosome 12 and in the course of their research made several new findings.

First, they could show, that the gene regulator interacts with genes over very long distances on the same chromosome (cis) and that it also is able to regulate genes on other chromosomes (trans). Thus, the tongue-twister name for this regulator: cis and trans-chromosomal communicator acting through DNA and noncoding RNA (CISTR-ACT).

Second, the team showed that because of a balanced translocation, CISTR-ACT is misplaced, so that the regulator no longer can properly influence PTHLH function.

Third, CISTR-ACT encodes a so-called long noncoding RNA that participates in the regulatory functions. This finding encompasses a new principle in gene regulation. Epigenetics refers to inherited mechanisms that occur without alterations in the DNA gene sequence. In this form of BDE, no change in the DNA sequence of coding genes is responsible for the condition.

Back to the first finding, the epigenetic regulator CISTR-ACT on chromosome 12 manages to get in touch with the gene PTHLH over a distance of 24 million base pairs. “The largest ever measured distance between a gene regulator and a gene on the same chromosome was around one million base-pairs”, explains Dr. Maass. Furthermore, CISTR-ACT regulates another developmental gene (SOX9) on chromosome 17. “This finding is extraordinary,” comments Dr. Maass.

How is this regulation possible? The researchers found the solution at the chromatin level, in which the chromosomes are densely packed. “Just imagine a ball of wool in which different threads actually touch each other at special points. At one point you have the gene, the other point symbolizes the gene regulator. “It is through this physical contact that CISTR-ACT regulates certain genes such as PTHLH very precisely in a specific tissue,” Dr. Maass and Dr. Bähring explain. The researchers could thus show that huge chromosomal loops build up on chromosome 12. Moreover, the epigenetic regulator, CISTR-ACT on chromosome 12 is somehow able to get in touch with its target SOX9 on chromosome 17.

Translocation on different chromosomes
Furthermore, Dr. Maass and Dr. Bähring could show that due to the balanced translocation involving chromosome 4, breakpoints result in patients with BDE so that the gene PTHLH is translocated far away to chromosome 4 in one family or to chromosome 8 in another. Such chromosomal rearrangments or translocations as geneticists say, can be inherited and are not that uncommon. They are often associated with cancer in which they are acquired (somatic mutations) or they can be a congenital (genomic) disorder. Translocations change the architecture of the genome. Genes can part from their regulator and be located at different places in the genome.

Translocations also influence gene expression, that is the production of proteins which built up and maintain the body`s tissues. Dr. Maass and Dr. Bähring found out that in their patients with BDE these translocations separate the gene PTHLH from its regulator CISTR-ACT, which reduces the expression of the gene during the development of cartilage. This state-of-affairs results in the premature maturation of the cartilage cells during the development of the extremities, leading to single shortened bones in the hands or feet of the patients with BDE.

New insights into the dogma of gene regulation
“We could also enlarge the dogma of gene regulation in monogenic diseases, that is in diseases which are caused by one single gene,” Dr. Maass and Dr. Bähring explain. Up until recently, scientists believed that DNA regulators residing in close proximity to their targets regulate genes.

The researchers in Berlin also showed that CISTR-ACT not only functions as a DNA-regulator, but also encodes a long non-coding RNA (lncRNA). Recently, researchers have begun looking at these lncRNA, because they appear to play an important role in organ development. Contrary to protein-coding genes these lncRNA do not produce proteins but instead serve their function in an epigenetic fashion. lncRNAs are distinguished by their length (greater than 200 nucleotides). Often, lncRNAs are encoded in many exons spread over large, intergenic DNA regions. Various diverse functions have been proposed for lncRNAs, including roles in regulating DNA metabolism, chromatin structure, and gene expression.

*A misplaced lncRNA causes brachydactyly in humans
Philipp G. Maass1,2, Andreas Rump3, Herbert Schulz2, Sigmar Stricker4, Lisanne Schulze1,2, Konrad Platzer3, Atakan Aydin1,2, Sigrid Tinschert3, Mary B. Goldring5, Friedrich C. Luft1,2 and Sylvia Bähring1
1 Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenbergerweg 80, 13125 Berlin, Germany
2 Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
3 Institute of Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technical University, Fetscherstrasse 74, 01307 Dresden, Germany
4 Development and Disease Group, Max-Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany

5 Hospital for Special Surgery, Laboratory for Cartilage Biology, Weill Cornell Medical College, Caspary Research Building, 535 E. 70th Street, New York, NY 10021, USA

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>