Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings challenge view of key part of immune defense

02.03.2011
The natural killer cells of our immune defense are activated for an extended period after the acute infection, which challenges the prevailing view that the elevation and activation of cells quickly pass. This is shown in a study regarding vole fever that was recently published by researchers at Umeå University, Sweden in Journal of Experimental Medicine.

These are findings of a years-long project where patients with vole fever, a northern Swedish hemorrhagic fever that has been studied with regard to natural killer (NK) cells. Vole fever is a common infection in northern Sweden that is caused by a hantavirus, Puumala virus, which is prevalent in bank voles and infects humans primarily via inhalation of virus-contaminated dust.

The symptoms are primarily high fever, head and muscle pain, abdominal pain, and generally impacted condition. Involvement of the kidneys and lungs are common. There is no dedicated and effective treatment today. As vole fever is a hemorrhagic fever, there is often a pronounced reduction in blood platelets, and bleeding complications occur. Some 30 % of the diagnosed cases are hospitalized. Mortality is 0.5 % owing to bleeding, shock, and multiple organ failure.

The Umeå researchers, led by assistant professor Clas Ahlm, have used a unique patient cohort to study the expansion of NK cells and their activity in the course of the infection in collaboration with scientists at the Karolinska institute. The material was gathered during and following the major outbreak of vole fever in 2007. There have been few previous studies of NK cells in acute viral infections in humans, even though they are regarded as part of our so-called innate immunity. The Puumala virus itself is not cytopatogenic, i.e. doesn’t kill the infected cells. The Umeå scientists’ hypothesis is therefore that part of the pathological mechanism in vole fever involves the immune defense against the virus infection, which is further supported by these findings.

The study revealed an expansion of NK cells. This expansion persisted for an extended period after the acute infection, which surprised the researchers. This finding challenges to some extent the previous view that the elevation and activation of NK cells quickly subsides in acute viral infections. The results of the study indicate that some NK cells may have memory-like functions.

Hemorrhagic fevers are best known as exotic diseases with high mortality rates that primarily ravage Africa. They are caused by hantaviruses that often infect humans from animals, so-called zoonos. The Ebola virus is probably the best-known variant. The Marburg virus is another. Viruses that cause hemorrhagic fevers are most often categorized as class 3-4 infectious agents, the class that requires the highest level of security when handled. for more information about this.

For more information, please contact Clas Ahlm, assistant professor at the Department of Clinical Microbiology, infectious diseases, at: +46 (0)90-785 23 09; e-mail clas.ahlm@climi.umu.se

The article “Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus”. (J Exp Med 2011 Jan 17)

A high-resolution portrait picture of Clas Ahlm is found on http://www.umu.se/digitalAssets/65/65144_ahlm_clas_0813_110301_mpn.jpg

Bertil Born | idw
Further information:
http://jem.rupress.org/content/208/1/13
http://f1000.com/7906956

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>