New findings challenge view of key part of immune defense

These are findings of a years-long project where patients with vole fever, a northern Swedish hemorrhagic fever that has been studied with regard to natural killer (NK) cells. Vole fever is a common infection in northern Sweden that is caused by a hantavirus, Puumala virus, which is prevalent in bank voles and infects humans primarily via inhalation of virus-contaminated dust.

The symptoms are primarily high fever, head and muscle pain, abdominal pain, and generally impacted condition. Involvement of the kidneys and lungs are common. There is no dedicated and effective treatment today. As vole fever is a hemorrhagic fever, there is often a pronounced reduction in blood platelets, and bleeding complications occur. Some 30 % of the diagnosed cases are hospitalized. Mortality is 0.5 % owing to bleeding, shock, and multiple organ failure.

The Umeå researchers, led by assistant professor Clas Ahlm, have used a unique patient cohort to study the expansion of NK cells and their activity in the course of the infection in collaboration with scientists at the Karolinska institute. The material was gathered during and following the major outbreak of vole fever in 2007. There have been few previous studies of NK cells in acute viral infections in humans, even though they are regarded as part of our so-called innate immunity. The Puumala virus itself is not cytopatogenic, i.e. doesn’t kill the infected cells. The Umeå scientists’ hypothesis is therefore that part of the pathological mechanism in vole fever involves the immune defense against the virus infection, which is further supported by these findings.

The study revealed an expansion of NK cells. This expansion persisted for an extended period after the acute infection, which surprised the researchers. This finding challenges to some extent the previous view that the elevation and activation of NK cells quickly subsides in acute viral infections. The results of the study indicate that some NK cells may have memory-like functions.

Hemorrhagic fevers are best known as exotic diseases with high mortality rates that primarily ravage Africa. They are caused by hantaviruses that often infect humans from animals, so-called zoonos. The Ebola virus is probably the best-known variant. The Marburg virus is another. Viruses that cause hemorrhagic fevers are most often categorized as class 3-4 infectious agents, the class that requires the highest level of security when handled. for more information about this.

For more information, please contact Clas Ahlm, assistant professor at the Department of Clinical Microbiology, infectious diseases, at: +46 (0)90-785 23 09; e-mail clas.ahlm@climi.umu.se

The article “Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus”. (J Exp Med 2011 Jan 17)

A high-resolution portrait picture of Clas Ahlm is found on http://www.umu.se/digitalAssets/65/65144_ahlm_clas_0813_110301_mpn.jpg

Media Contact

Bertil Born idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors