Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings challenge view of key part of immune defense

02.03.2011
The natural killer cells of our immune defense are activated for an extended period after the acute infection, which challenges the prevailing view that the elevation and activation of cells quickly pass. This is shown in a study regarding vole fever that was recently published by researchers at Umeå University, Sweden in Journal of Experimental Medicine.

These are findings of a years-long project where patients with vole fever, a northern Swedish hemorrhagic fever that has been studied with regard to natural killer (NK) cells. Vole fever is a common infection in northern Sweden that is caused by a hantavirus, Puumala virus, which is prevalent in bank voles and infects humans primarily via inhalation of virus-contaminated dust.

The symptoms are primarily high fever, head and muscle pain, abdominal pain, and generally impacted condition. Involvement of the kidneys and lungs are common. There is no dedicated and effective treatment today. As vole fever is a hemorrhagic fever, there is often a pronounced reduction in blood platelets, and bleeding complications occur. Some 30 % of the diagnosed cases are hospitalized. Mortality is 0.5 % owing to bleeding, shock, and multiple organ failure.

The Umeå researchers, led by assistant professor Clas Ahlm, have used a unique patient cohort to study the expansion of NK cells and their activity in the course of the infection in collaboration with scientists at the Karolinska institute. The material was gathered during and following the major outbreak of vole fever in 2007. There have been few previous studies of NK cells in acute viral infections in humans, even though they are regarded as part of our so-called innate immunity. The Puumala virus itself is not cytopatogenic, i.e. doesn’t kill the infected cells. The Umeå scientists’ hypothesis is therefore that part of the pathological mechanism in vole fever involves the immune defense against the virus infection, which is further supported by these findings.

The study revealed an expansion of NK cells. This expansion persisted for an extended period after the acute infection, which surprised the researchers. This finding challenges to some extent the previous view that the elevation and activation of NK cells quickly subsides in acute viral infections. The results of the study indicate that some NK cells may have memory-like functions.

Hemorrhagic fevers are best known as exotic diseases with high mortality rates that primarily ravage Africa. They are caused by hantaviruses that often infect humans from animals, so-called zoonos. The Ebola virus is probably the best-known variant. The Marburg virus is another. Viruses that cause hemorrhagic fevers are most often categorized as class 3-4 infectious agents, the class that requires the highest level of security when handled. for more information about this.

For more information, please contact Clas Ahlm, assistant professor at the Department of Clinical Microbiology, infectious diseases, at: +46 (0)90-785 23 09; e-mail clas.ahlm@climi.umu.se

The article “Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus”. (J Exp Med 2011 Jan 17)

A high-resolution portrait picture of Clas Ahlm is found on http://www.umu.se/digitalAssets/65/65144_ahlm_clas_0813_110301_mpn.jpg

Bertil Born | idw
Further information:
http://jem.rupress.org/content/208/1/13
http://f1000.com/7906956

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>