Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings on the Brain’s Immune Cells during Alzheimer’s Disease Progression

11.04.2013
The plaque deposits in the brain of Alzheimer’s patients are surrounded by the brain’s own immune cells, the microglia. This was already recognized by Alois Alzheimer more than one hundred years ago. But until today it still remains unclear what role microglia play in Alzheimer’s disease. Do they help to break down the plaque deposit?

A study by researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and Charité – Universitätsmedizin Berlin has now shed light on these mysterious microglia during the progression of Alzheimer’s disease. (PLoS One, doi:10.1371/journal.pone.0060921)*.


Immune cells of the brain, the microglia (brown), cluster around the beta-amyloid deposits (red) in a mouse model for Alzheimer’s disease. Photo: Frank Heppner/ Copyright: Charité

Dr. Grietje Krabbe of the laboratory of Professor Helmut Kettenmann (MDC) and Dr. Annett Halle of the Neuropathology Department of the Charité headed by Professor Frank Heppner demonstrated that the microglial cells around the deposits do not show the classical activation pattern in mouse models of Alzheimer´s disease.

On the contrary, in the course of the Alzheimer’s disease they lose two of their biological functions. Both their ability to remove cell fragments or harmful structures and their directed process motility towards acute lesions are impaired. The impact of the latter loss-of-function needs further investigation. The plaques consist of protein fragments, the beta-amyloid peptides, which in Alzheimer’s disease are deposited in the brain over the course of years. They are believed to be involved in destroying the nerve cells of the affected patients, resulting in an incurable cognitive decline.

However, just why the microglial cells, which cluster around the deposits, are inactivated or lose their functionality is still not fully understood. The researchers concluded that this process occurs at a very early stage of disease development and is likely triggered by the beta-amyloid. This is confirmed by the fact that the loss-of-function of the microglial cells in the mice could be reversed by beta-amyloid antibodies thereby decreasing the beta-amyloid burden. According to the researchers, the potential to restore microglial function by directed manipulation should be pursued and exploited to develop treatments for Alzheimer’s disease.

**Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology

Grietje Krabbe1,4,*, Annett Halle2,3,*, Vitali Matyash1, Jan L Rinnenthal2, Gina D Eom2, Ulrike Bernhardt2, Kelly R Miller2, Stefan Prokop2, Helmut Kettenmann1,#, Frank L Heppner2,#

1Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Str. 10, 13125 Berlin, Germany
2Department of Neuropathology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
3Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
4Present address: Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA

*,# These authors contributed equally to this work.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>