Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Finding the Achilles' Heel of ovarian tumor growth


A team of scientists, led by principal investigator David D. Schlaepfer, PhD, professor in the Department of Reproductive Medicine at the University of California, San Diego School of Medicine report that small molecule inhibitors to a protein called focal adhesion kinase (FAK) selectively prevent the growth of ovarian cancer cells as tumor spheroids.

The findings come in a pair of studies published online this week in the journals Gynecologic Oncology and Molecular Cancer Therapeutics.

This image depicts an ovarian tumor spheroid. FAK is stained red, osteopontin green and DNA blue.

Credit: UC San Diego School of Medicine

Ovarian cancer is a leading cause of female cancer death in the United States. On average, more than 21,000 women are diagnosed with ovarian cancer each year and 14,270 die. Many women achieve remission, but cancer recurrence rates exceed 75 percent, prompting the need for new treatments.

"Ovarian cancer spreads within a women's peritoneal space through a unique mechanism that involves the survival of small clusters of tumor cells termed spheroids," said Schlaepfer. "Our studies show that FAK signaling functions at the center of a tumor cell survival signaling network."

In the first study, published in Gynecologic Oncology, first author Nina Shah, MD, a gynecological oncology fellow in the Department of Reproductive Medicine, found that ovarian tumor cells with low levels of a tumor suppressor protein, called merlin, displayed heightened sensitivity to FAK inhibitor growth cessation.

"With FAK inhibitor clinical trials already testing a similar linkage in mesothelioma (a rare cancer that affects the protective lining of many internal organs), our results support the hypothesis that protein biomarkers such as merlin may identify those patients who may best respond to FAK inhibitor therapy," said Schlaepfer.

In the second study in Molecular Cancer Therapeutics, first author Isabelle Tancioni PhD, an assistant project scientist at UC San Diego Moores Cancer Center discovered that a network of signals generated by osteopontin – a beta-5 integrin receptor used in cell-to-cell signaling – and FAK control ovarian cancer spheroid growth.

High levels of beta-5 integrin and FAK expression are associated with a poor prognosis for some ovarian cancer patients. "Thus, high levels of beta-5 integrin may serve as a novel biomarker for ovarian carcinoma cells that possess active FAK signaling," said Schlaepfer.

Schlaepfer noted that tumor recurrence and metastasis are responsible for the majority of ovarian cancer-related deaths and said the new findings support ongoing clinical trials of FAK inhibitors as new agents in the fight to prevent ovarian cancer progression.


Co-authors include Sean Uryu, Florian J. Sulzmaier, Christine Lawson, Christine Jean, Xiao Lei Chen, Kristy K. Ward and Nichol L.G. Miller, UCSD Moores Cancer Center; and Denise C. Connolly, Fox Chase Cancer Center, Philadelphia, PA.

Funding for this research came, in part, from the National Institutes of Health (grant CA102310) and the non-profit Nine Girls Ask?

Scott LaFee | Eurek Alert!

Further reports about: Achilles Cancer FAK Gynecologic Molecular Oncology biomarkers levels ovarian trials

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>