Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the Achilles' Heel of ovarian tumor growth

20.06.2014

A team of scientists, led by principal investigator David D. Schlaepfer, PhD, professor in the Department of Reproductive Medicine at the University of California, San Diego School of Medicine report that small molecule inhibitors to a protein called focal adhesion kinase (FAK) selectively prevent the growth of ovarian cancer cells as tumor spheroids.

The findings come in a pair of studies published online this week in the journals Gynecologic Oncology and Molecular Cancer Therapeutics.


This image depicts an ovarian tumor spheroid. FAK is stained red, osteopontin green and DNA blue.

Credit: UC San Diego School of Medicine

Ovarian cancer is a leading cause of female cancer death in the United States. On average, more than 21,000 women are diagnosed with ovarian cancer each year and 14,270 die. Many women achieve remission, but cancer recurrence rates exceed 75 percent, prompting the need for new treatments.

"Ovarian cancer spreads within a women's peritoneal space through a unique mechanism that involves the survival of small clusters of tumor cells termed spheroids," said Schlaepfer. "Our studies show that FAK signaling functions at the center of a tumor cell survival signaling network."

In the first study, published in Gynecologic Oncology, first author Nina Shah, MD, a gynecological oncology fellow in the Department of Reproductive Medicine, found that ovarian tumor cells with low levels of a tumor suppressor protein, called merlin, displayed heightened sensitivity to FAK inhibitor growth cessation.

"With FAK inhibitor clinical trials already testing a similar linkage in mesothelioma (a rare cancer that affects the protective lining of many internal organs), our results support the hypothesis that protein biomarkers such as merlin may identify those patients who may best respond to FAK inhibitor therapy," said Schlaepfer.

In the second study in Molecular Cancer Therapeutics, first author Isabelle Tancioni PhD, an assistant project scientist at UC San Diego Moores Cancer Center discovered that a network of signals generated by osteopontin – a beta-5 integrin receptor used in cell-to-cell signaling – and FAK control ovarian cancer spheroid growth.

High levels of beta-5 integrin and FAK expression are associated with a poor prognosis for some ovarian cancer patients. "Thus, high levels of beta-5 integrin may serve as a novel biomarker for ovarian carcinoma cells that possess active FAK signaling," said Schlaepfer.

Schlaepfer noted that tumor recurrence and metastasis are responsible for the majority of ovarian cancer-related deaths and said the new findings support ongoing clinical trials of FAK inhibitors as new agents in the fight to prevent ovarian cancer progression.

###

Co-authors include Sean Uryu, Florian J. Sulzmaier, Christine Lawson, Christine Jean, Xiao Lei Chen, Kristy K. Ward and Nichol L.G. Miller, UCSD Moores Cancer Center; and Denise C. Connolly, Fox Chase Cancer Center, Philadelphia, PA.

Funding for this research came, in part, from the National Institutes of Health (grant CA102310) and the non-profit Nine Girls Ask?

Scott LaFee | Eurek Alert!

Further reports about: Achilles Cancer FAK Gynecologic Molecular Oncology biomarkers levels ovarian trials

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>