Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the Sweet Spot

19.12.2011
Modifications to chromosomal proteins help ensure that brain-specific sugars are produced only in the appropriate tissues.

Many proteins are adorned with carbohydrate chains called glycans that can dramatically alter their stability, localization or function. These diverse sugars are assembled and modified by a variety of glycosylating enzymes, with some glycans exclusively manufactured within specific organs or tissues.


Figure 1: Neural cell-specific modifications to chromosomal proteins govern the production of Gnt-IX and thereby ensure that branched O-mannose glycan production is restricted to these cells.
Copyright : 2011 iStockphoto/sitox

The â1,6-branched O-mannosyl glycan appears only in the mammalian brain. Naoyuki Taniguchi’s team at the RIKEN Advanced Science Institute in Wako recently characterized the enzyme, N-acetylglucosaminyltransferase IX (GnT-IX, also called GnT-Vb) that produces this particular glycan variant1 (Fig. 1). “We knew that some glycan-synthesizing enzymes are expressed in restricted tissues, but did not know how they are expressed,” says Yasuhiko Kizuka, a researcher in Taniguchi’s laboratory. “This led us to investigate how GnT-IX is specifically expressed in the brain.”

Many genes are regulated by so-called ‘epigenetic mechanisms’, in which gene expression is modulated via modification of the histone protein scaffold that supports chromosomal DNA, and the researchers began by examining this possibility. When histone proteins undergo a modification known as acetylation, nearby genes are typically activated; conversely, removal of this acetylation has an inhibitory effect.

Taniguchi and colleagues determined that the gene encoding GnT-IX is typically maintained in an inactive, non-acetylated state in 3T3-L1, a cell line derived from the fibroblasts that form connective tissue. However, when the researchers treated these cells with a drug that promotes histone acetylation, they strongly expressed GnT-IX. The brain tumor-derived Neuro2A cell line, however, naturally expresses high levels of GnT-IX. The researchers found that these cells normally maintain the chromatin near this gene in a state that stimulates activation.

In subsequent experiments, Kizuka and Taniguchi not only identified specific DNA sequences that directly regulate GnT-IX activity, but also two proteins that bind to these sites to drive expression. They found one of these factors, CTCF, in both 3T3-L1 and Neuro2A cells, but its recruitment to the GnT-IX gene was far stronger under the favorable histone modification conditions found in the latter cells.

Intriguingly, a preliminary screen of four other glycosylation enzymes suggested that similar mechanisms govern their tissue-specificity. “Our work suggests that expression of many other glyco-genes could be regulated epigenetically,” says Kizuka.

In future studies, the researchers intend to explore how this regulatory mechanism plays into the bigger picture of glycan function. “Our group has been trying to elucidate the ‘glycan cycle’—how glycans are dynamically synthesized, play diverse roles and are degraded—using a systems biology approach,” says Kizuka. “This work tells us that epigenetic regulation is a part of this cycle.”

The corresponding author for this highlight is based at the System Glycobiology Research Group, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>