Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding our way around DNA

14.02.2017

Most of us would be lost without Google maps or similar route-guidance technologies. And when those mapping tools include additional data about traffic or weather, we can navigate even more effectively. For scientists who navigate the mammalian genome to better understand genetic causes of disease, combining various types of data sets makes finding their way easier, too.

A team at the Salk Institute has developed a computational algorithm that integrates two different data types to make locating key regions within the genome more precise and accurate than other tools. The method, detailed during the week of February 13, 2017, in Proceedings of the National Academy of Sciences, could help researchers conduct vastly more targeted searches for disease-causing genetic variants in the human genome, such as ones that promote cancer or cause metabolic disorders.


A Salk team developed a tool that maps functional areas of the genome to better understand disease.

Credit: Salk Institute

"Most of the variation between individuals is in noncoding regions of the genome," says senior author Joseph Ecker, a Howard Hughes Medical Institute investigator and director of Salk's Genomic Analysis Laboratory. "These regions don't code for proteins, but they still contain genetic variants that cause disease. We just haven't had very effective tools to locate these areas in a variety of tissues and cell types--until now."

Only about two percent of our DNA is made up of genes, which code for proteins that keep us healthy and functional. For many years, the other 98 percent was thought to be extraneous "junk." But, as science has developed ever more sophisticated tools to probe the genome, it has become clear that much of that so-called junk has vital regulatory roles. For example, sections of DNA called "enhancers" dictate where and when the gene information is read out.

Increasingly, mutations or disruption in enhancers have been tied to major causes of human disease, but enhancers have been hard to locate within the genome. Clues about them can be found in certain types of experimental data, such as in the binding of proteins that regulate gene activity, chemical modifications of proteins (called histones) that DNA wraps around, or in the presence of chemical compounds called methyl groups in DNA that turn genes on or off (an epigenetic factor called DNA methylation).

Typically, computational methods for finding enhancers have relied on histone modification data. But Ecker's new system, called REPTILE (for "regulatory-element prediction based on tissue-specific local epigenomic signatures"), combines histone modification and methylation data to predict which regions of the genome contain enhancers. In the team's experiments, REPTILE proved more accurate at finding enhancers than algorithms that rely on histone modification alone.

"The novelty of this method is that it uses DNA methylation to really narrow down the candidate regulatory sequences suggested by histone modification data," says Yupeng He, a Salk graduate student and first author of the paper. "We were then able to test REPTILE'S predictions in the lab and validate them with experimental data, which gave us a high degree of confidence in the algorithm's ability to find enhancers."

The REPTILE algorithm operates in two general steps: training and prediction. For training, the Salk team taught REPTILE to recognize mammalian enhancers by feeding into the algorithm both the locations of known enhancers as well as genomic areas other than enhancers in the DNA. In the prediction step, the algorithm ran on nine mouse and five human cell lines and tissues whose enhancer regions were unknown and pinpointed the locations of potential enhancers.

Finally, the team utilized data from laboratory experiments to test whether the predictions made by REPTILE in the prediction step corresponded to real regulatory regions. Because enhancers increase the activity of target genes, researchers can test the activity of DNA sequences by connecting them to a reporter gene and watching to see whether the supposed target gene ramps up. Using molecular tools, the team engineered mouse embryos so that enhancer activation would trigger the expression of linked reporters, which can be monitored by staining.

So, if REPTILE predicted that a specific enhancer was linked to mouse forebrain development, the team was able to look for a staining pattern in the embryo's forebrain region. If they saw it, REPTILE's prediction was considered valid. The Salk team also tested REPTILE's predictions against four other commonly used enhancer-finding algorithms. Overall, REPTILE outperformed each one, finding enhancer regions with greater accuracy (getting closer to them along the DNA strand) and fewer errors (misidentifications). In particular, REPTILE was more successful than the other systems at the invaluable task of finding enhancers in different tissue types than those it was trained on.

"The number of genetic variants in the genome is enormous," says Ecker. "So in terms of finding ones that cause disease, you really want to shine a spotlight on the regions you think are most important and identifying enhancers is a critical step in the process."

###

Other authors included Joseph R. Nery and Rosa G. Castanon of the Salk Institute; David U. Gorkin, Ah Young Lee and Bing Ren of the University of California, San Diego; Diane E. Dickel, Axel Visel and Len A. Pennacchio of Lawrence Berkeley National Laboratory; and Yin Shen of the University of California, San Francisco.

The work was funded by the H. A. and Mary K. Chapman Charitable Trust, the A. P. Giannini Foundation, the National Institutes of Health, the Gordon and Betty Moore Foundation and the California Institute for Regenerative Medicine.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
press@salk.edu
858-453-4100

 @salkinstitute

http://www.salk.edu 

Salk Communications | EurekAlert!

Further reports about: DNA Salk University of California algorithm methylation proteins

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>