Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding an opening

14.04.2009
A detailed structural analysis reveals new insights into the operating mechanism of a protein pore

Many newly synthesized proteins will pass their lives within the confines of the cell, but many others end up secreted or embedded in the cellular membrane.

Such proteins are labeled by specific ‘tags’ encoded in their sequences, which get recognized by proteins that escort them to the pore-like translocon protein complex. In bacteria, translocons are situated in the inner cell membrane. They remain effectively closed until they interact with an escorted protein, at which point the pore opens and allows the protein to pass through the membrane.

The central pore complex of the bacterial translocon is formed by a trio of proteins: SecY, SecE and SecG. Pore opening is initiated via interaction of the SecYEG complex with an additional protein, SecA, although many mechanistic details of this process remain unclear.

Now, new work from a multi-institutional research team, led by Osamu Nureki of the University of Tokyo and Koreaki Ito of Kyoto University, and including RIKEN scientists Naoshi Dohmae and Yuji Sugita of the Advanced Science Institute in Wako, has yielded valuable new insights into this process (1).

The team generated crystals of the SecYE complex from the bacterium Thermus thermophilus, assisted by the inclusion of an antibody fragment that helped to stabilize the complex, and then compared this structure against a previously determined structure of the ‘closed’ translocon from a primitive bacterial species that lacks SecA2. This comparison revealed the existence of an opening absent from the closed structure, suggesting that the SecYE-antibody complex had assumed a transitional ‘pre-open’ state.

Follow-up analysis yielded multiple lines of evidence that the antibody interaction with SecYE mirrors the association of this complex with SecA, suggesting that the structure seen here is a true intermediate in the translocon opening process, and that SecA binding induces formation of an entry point in SecYE for translocation-ready proteins. This transition of SecYE into the pre-open state also appears to induce major conformational changes in SecA, which enable it to act as a motor for facilitating protein transit through the translocon pore.

Dohmae and Sugita are continuing to collaborate in the further examination of this mechanism, using chemical analysis techniques and computational simulations to confirm that the model developed based on these findings reflects the reality of how these proteins interact in the cell, but both researchers are pleased with these initial structural insights. “This crystal structure is useful to understand the early process of polypeptide translocation through Sec channels,” says Sugita.

Reference

1. Tsukazaki, T., Mori, H., Fukai, S., Ishitani, R., Mori, T., Dohmae, N., Perederina, A., Sugita, Y., Vassylyev, D.G., Ito, K. & Nureki, O. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988–991 (2008).

2. Van den Berg, B., Clemons, W.M., Collinson, I., Modis, Y., Hartmann, E., Harrison, S.C. & Rapoport, T.A. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

The corresponding author for this highlight is based at the RIKEN Biomolecular Characterization Team

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/671/
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>