Finding the needle in the proteomic haystack

Researchers at the RIKEN Advanced Science Institute have demonstrated that a technique for tagging and profiling proteins can be used to accurately classify anti-cancer drugs based on the molecules they target. The technique, developed in collaboration with a researcher at the University of Tsukuba, promises to accelerate the process of proteomic profiling and contribute to more effective drug discovery.

While essential for effective treatment, our understanding of the complex relationship between drugs and their molecular targets is far from complete. Drug efficacy is thus low, and drugs are often accompanied by dangerous side effects. Targeted cancer therapies, which act by interfering with specific molecules contributing to tumor growth, can bring therapeutic benefits to certain patients, yet are not free of these problems. Solving them depends on connecting drugs to their molecular targets, a task complicated by the huge variety of proteins and complexity of drug-target networks.

In recent years, the field of proteomics has produced powerful techniques that simplify this task by accurately identifying proteins and their interactions. The research team used one of these techniques, two-dimensional difference gel electrophoresis (2D-DIGE), to analyze and compare changes of protein expression levels in HeLa cancer cells treated with 19 well-known anti-cancer agents. The method successfully classified compounds of different structures but sharing molecular target(s), while revealing that compounds previously reported to inhibit the same process in fact were clustered into different groups, highlighting differences in underlying interaction mechanisms.

Described in the journal Chemistry and Biology, the findings broaden the scope of proteomic profiling by enabling researchers to characterize specific compounds in terms of how they interact with biomolecules. While refining the drug discovery process, this advance also contributes to minimizing side-effects, potentially supporting the future development of safer and more effective anticancer drugs.

For more information, please contact:

Dr. Hiroyuki Osada
Dr. Makoto Muroi
Chemical Library Validation Team
RIKEN Advanced Science Institute (ASI)
Tel: +81-(0)48-467-4839 / Fax: +81-(0)48-462-4669
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors